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* Mountain glaciers are rapidly changing

* We can measure surface elevation change for all glaciers on Earth (e.g., Hugonnet et al. 2021,
Jakob & Gourmelen 2023)

* The temporal span of these global observations (decades) is short relative to glacier response
times (decades to centuries)

* We need to increase the temporal span of observations to understand processes affecting long-
term glacier change and constrain glacier projections
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* How can we use historical images to improve past, present, and future understanding of glaciers?

* (Case study on Kennicott and Root Glaciers in Alaska
* How do glacier dynamics and the climate contribute to retreat?

* How do historical observations affect projections from a glacier evolution model?



Kennlcott and R %»\t glauer are unlquely data rlch |
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e Historical DEMs (1938, 1957, 1962, 1978)
 Modern DEMs (2004, 2012, 2023)

* Bed data

* Velocity (Historical 1957-1962, ITS LIVE)
* Glacier outlines 61.5°N §
+ Climate data (1940-2100; ERA5, CMIP6) |

* Historical aerial photographs exist for much
more of Alaska!
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Glacier-wide thinning precludes debrls covered
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Glacier-wide thinning precludes debrls covered
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Glacier-wide thinning precludes debrls covered

_termi nus wa stagm G O W e
b -30+4 >>29-_|-]__2:_‘2_2f2 S
e S & = e |
774 . -;J?RJQ‘
; e Pl
J
-26+2
!
i,
Py §  {ennicott Terminus 11 '
1957 - 1978 .« {ennicott Glacier i ‘ ’
oot Glacier liiiii 1978 - 2004
200 - Hugonnet et al. (2021) :
-------------- Hugonnet et al. (2021) (glacier-wide)

1940 1960 1980 2000 2020



H|stor|cal pho

5 &
-.)‘” s

tog

e <
o O "k go i

“
-— PR L S S -

* Feature-tracking of
orthophotos with
PyCorr software is
effective on clean-ice
over 5 years
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Past observatlons constrains future mass Ioss
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-Takeaways
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* Historical images of remote Alaska are becoming publicly available

* Once digitally scanned, these images offer the potential to gain long-term insights of glaciers
across Alaska
* Mass balance, historical glacier volume, velocity and driving stress

* Multi-decadal mass balance records improve projections in the near (decade-scale) and distant
future (century-scale)
* By constraining glacier evolution over ~80 years, we have higher confidence in projections 80 years from now

* Such data/analyses ultimately enables us to anticipate future changes and develop strategies to
mitigate the impacts on sea-level rise, ecosystems, water resources, and the communities that
rely on these glaciers
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Glacier slowdown drives modern- day retreat on
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How do past observations change glauer evolution
_model projectionsz PN b o ey

1. Calculate historical glacier volume & calibrate b FEEER 7 789 [T Fere -
model with historical volume (~1940) ( : 5@%&’* . Ao A il Rl kg
. 7O Qﬂ% ,’ % ¢ e Hig? T"'f
2- Run PyG EM from 1940_2023 for a” pla uSIbIe H Wﬁ C 1938 - 1957 % . 1957-1978 4 |1978-2004 2004 - 2012 2012 - 2023
Thias Koy @and ddf,,, combinations 000 2020 o S 1938 -2023
3. Select optimal parameter combinations ... (Hugonnetetal, 2021)
* Match modeled mass balance to DEM SRS A S
differencing observations (within uncertainty) | | & el sy
* Calculate RMSE misfit of elevation-binned : € 7 /k PyGEM
change in ice thickness °
* n=89 for Kennicott Glacier, n=22 for Root Climate data
Glacier (ERAD)
4. Run PyGEM to 2100 for all optimal parameter
combinations

* Take the mean of all simulations

* Run projections for four emissions scenarios

L ‘ 2020-2100
s ROUNCE et al., 2023)




Historical mass balance enables glacier mass
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Past observatlons constralns future mass Ioss
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Past observatmng constralns future mass Ioss
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Modeled glauer change along centerlme
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Example flduual-marks on film photographs
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Historical aerial &hotographs »&enable glauer
stru t‘lon & . ’7“.}*” ‘\.\\* i SN =

* We generate historical DEMs with high spatial

resolution and accuracy using structure-from-
motion photogrammetry
Year Images GCPs GCP Dense DEM
used error cloud . resolution
[m] points [10] [m]
1938 3 9 79.8 154 10
1957 32 77 3.21 473 4.53
1962 5 30 0.81 7.6 5.27

1978 17 81 1.04 12.6 12.6




Historical aerial &hotographs enable gIaC|er
surface reconstruction 8P ol it o
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* We generate historical DEMs with high spatial
resolution and accuracy using structure-from-
motion photogrammetry

Year Images GCPs GCP Dense DEM
used error cloud . resolution
[m] points [10] [m]
1938 3 9 79.8 15.4 10
1957 32 77 3.21 473 4.53
1962 5 30 0.81 7.6 5.27

1978 17 81 1.04 12.6 12.6




Historical DEM
_processing workflow

. Film fiducial
Preprocessing R mark
photos i
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Digitized i .
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_______________________________________ r -
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Comparison between 1957 DEM and 1957 DEM
~derived from USGS { \
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Probability Density

Step-wise calibration of PyGEM (future steps)
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