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Background and Significance

« Glacier in Alaska constitute >25% of all mountain glacier contributions to sea-level rise; this

has widespread implications
« Understanding how glaciers are responding to climate forcing is critical to reducing

uncertainties in global models and long-term projections
« Yet, our ability to resolve the climatic mass balance is encumbered by a lack of in-situ

observations and limitations associated with remote sensing data
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Background and Significance

Gulkana Glacier Ice thickness and Velocity from

various large-scale datasgts. Number of velocity products that are consistent
with terrain aspect
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Project Approach

Field Velocity Elevation Change Climate Data / Project Outcomes \
Data (Time-lapse feature tracking, (Time-lapse SfM, monitored (AWS) e .
ablation stake tracking) ablation stakes) : Development of novel :
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Methods: The Continuity Equation

/ Total Mass Balance: biot = — ey T e
dt A Q SURFACE

o : dh
Climatic Mass Balance: b, = ’r + Vg

du,  du,
here: V
w0 (% &

and u,, u, are column-avg velocities,

Thickness

ésfc + dsfc + Cz + az

N §

Calculating the climatic mass balance relies on 3 primary data inputs:

Elevation change
Carnegie

Ice thickness
+ Velocity
DEMs are needed to altitudinally-resolve (bin) the climatic mass balance. Repeat DEMs can also be used to obtain Mellon
University

the elevation change signal




Example Remote Sensing Processing Workflow

Raw Data Products

Data Smoothing
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Reproject, resample, and clip data based
on glacier outline

Smooth velocity and ice thickness
products with a moving-window Gaussian
filter with window size based on local
pixel ice thickness

Apply the continuity equations
Altitudinally-resolve into elevation bins

Remote sensing datasets are from:
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Hugonnet et al. (2021)
Farinotti et al. (2019)
Millan et al. (2022)
Gardner et al. (2019)
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Remote Sensing Datasets on Gulkana

Gulkana Glacier Ice thickness and Velocity from  Total and Climatic Mass Balance of Gulkana using

various large-scale datasets different velocity products
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The climatic mass balance gradient is off by >50% compared to the observed stake data!




Field Data Measurements

DEMs and velocities are derived from multiple time-

lapse cameras using photogrammetry and feature
tracking

Accumulation Z0ne

* Monitored banded ablation stakes Y x
« Time-lapse MVS photogrammetry *9 4
« Ground-Penetrating Radar (GPR)

Ablation stakes provide
point estimates of melt
and velocity

Ground-penetrating radar is used
to calculate ice thickness




Monitored Ablation Stakes

* Emergence = Zpottom — Zdem

emergence

dt
Climatic mass balance is also observed
directly from stake measurements

. dz
¢ bclim = dt +

Spring stake
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Monitored Ablation Stake Results

Gulkana Stake Data Time Series: Glacier Surface Type
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Monitored Ablation Stake Results

Gulkana Stake Cumulative and Daily Elevation Change
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Climatic mass balance:

* -418 matsiteB

« -2.79matsiteD
Change in sfc elevation:

« -570 matsite B

« -5.78 matsiteD
Change in elevation at
the bottom of the stake:

« -1.86 matsite B

« -2.82matsiteD
Change in elevation due
to glacier slope:

« -1.77 matsite B

« -231T matsiteD
Emergence velocity:

* -0.25 m/yr atsite B

* -1.45 m/yr at site D
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Time-lapse Cameras

* Four cameras placed on moraines,
pointed towards the accumulation area in
the main branch of the glacier

» Each camera takes 3 pictures per day at
the exact same time, such that features
have identical lighting for a set of images




Time-lapse Camera Results

Photogrammetric output for April 2022 DEM

April DEM from time-lapse cameras
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Time-lapse Camera Results

Difference between USGS 2m DEM (2021)

Photogrammetric output for April 2022 DEM and our April DEM (2022)
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Time-lapse Camera Results

Photogrammetric output for July 2022 DEM July DEM from time-lapse cameras
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Time-lapse Camera Results

Photogrammetric output for July 2022 DEM Difference between April and July DEMs
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Ground-Penetrating Radar

 —
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Ground-Penetrating Radar Data: Sample Cross-
Section (cs01)

Radargram Plot (cs01)

Radargram Plot (cs01)
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Ground-Penetrating Radar: Gulkana Results
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GPR Point Plots
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Ground-Penetrating Radar: Comparing to Remote

Se N Si ng Da ta 1e6 Millan vs SplineCV Interpolation
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Takeaways and Next Steps

« We have a whole host of in-situ and modeled data to calibrate and validate remote
sensing products

« Using this field data to constrain the climatic mass balance from remote sensing can
reconcile discrepancies in remote sensing products and quantify/reduce uncertainties in
the data

« Quantifying and reducing uncertainties in remote sensing products is critical for
improved models and projections

« Next steps are to processing field data and continue developing modeled products, such
that datasets the climatic mass balance gradient derived from the data align with field
observations
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Thank you! Questions?
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