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A quick intro...

Pursuing a Ph.D. in Civil and
Environmental Engineering,
studying glaciers

: %« Received an Sc.B. in Mechanical Engineering




Why are glaciers important?

GLACIERHUB BLOG

Bridge
Lake OuU
e ]
BY H

Extraordinary recorc
Hassanabad Bridge
unprecedented hea
flooded, wiping out

powe\' p\ar\ts.

This event is the \a'
outburst floods, 0
jmportant o analy

urge "mmediate \c

PAMIRT
@pam‘\r(
Hassanabad
g\ac'\a\ \ake ¢

#ClimateEm
#G\oba\Wa‘

collapse
tburcf Flno

f.
8lacial lakae(;e

O 7 February

s

e to Glacier

t
hreat of ﬂooding from

NEws
/ cmyn
EWS /" DEHRADUN NEW:
2

!-Iow melting glaciers fueled Pakistan fgs:;‘” g
oo

lacial I3 e Ml oo
d’ kes in Kumaon Hima‘lv .
ayas,

77 New

in pakistan Du

Glacial melt in Indus raises water concerns 1ate change is melting them into

GAURAV T,
ALWAR
T
/ NN/ Updateq: Mar 2,202
y 3,083 |s
. T

Alaska tourism
; sm threaten iconi
Mar 06,2023 02:59 PMIST ] =2 o O ® ¢ glaciers melt away ed as iconic

bl Alaska Anch

“Climate change projections for the region suggest that contribut _
glacier melt water would peak in the middle of this century andtt B
Additionally, water demand for the basin is projected to increase
future.” said the study published in the latest issue of the peer-re
journal.

By Jayashree Nandi, New Delhi

(2 ) (&) (ma)

A view of Exit Glacier
lacier from the National Parks trail. (Courtesy National Parks S
i rks Service)

> 0:00/427 =

Increased glacial melt in the Indus river basin due to global warmingis | o

strategic concerns over the sharing of water. (Bloomberg/ Representat! A recent study found that two-thirds of the world’s glaci
this century. Th ciers could disappear b
ry. That may sound pretty far into the future, but in Alaska (:o f PR
¥ se frozen

Increased glacial melt in the Indus river basin due to global wg 2ndmarks are a strong attracion or the state’s tourism indust
ry.

to raise strategic concerns over the sharing of water in the ref

For at least one glacier-foc
. . . . . . -focused
research article in the Current Science journal has indicated. sed company, Seward-based Exit Glacier Guides, which takes

visitors to its icy namesake, the end is already in sight.



Glacier mass loss is occurring worldwide
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uir Glacier, Alaska

Image Credit: NSIDC



Waggonwaybreen, Svalbard

mage Credit: Andreas Weith



Kyetrak Glacier, Tibet
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Image Credit: David Breashears/Royal Geographic Society



Extreme mass loss is also observed over the
last few years

Bear Glacier, Alaska

NPS photos, D. Kur

Image Credit: NPS



Fox Glacier, New Zealand

2015

Image Credit: Dr lan Fuller
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The most recent models project ~50-80% of global
glaciers to melt by 2100

e Glaciers account for only 1%
of global ice volume

* Account for 1/4 to 1/3 of
observed sea-level rise in
recent years

* Global average thinning rates
of 0.85 m/yr (2006-2015)
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Figure from Rounce et al. 2023




What regions are losing the most mass?

_ Reglonal and global glacier thinning rates from 2000-2019
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Southern Andes (17)
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So, how can we predict a glacier's response to the
climate?

First, we need to understand how glaciers work!
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Climate + Gravity
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Mass balance + Glacier dynamics




Mass balance + Glacier dynamics
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Mass balance + Glacier dynamics
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Mass balance + Glacier dynamics
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Glacier is in retreat!



JMass balance + Glacier dynamics
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Ablation 20N€

Glacier is in retreat!

dh

Total Mass Balance: btot =

2| Climatic Mass Balance: i)chm = E + Vgq

where: Vg =Vu-h



We need 3 primary data inputs:
- Digital Elevation Models (elevation change) Aplation 207
Ice thickness >
SR,

Glacier is in retreat!

Total Mass Balance: btot

4 Climatic Mass Balance: bcjim = T + Vgq

where: Vg =V u(@




Large-scale, systematic remote sensing products
have discrepancies

* Gulkana Glacier in Alaska is ~¥17.5 km?
e Global velocity products show large deviations in magnitude and

spatial distributions
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Modeled ice thickness products also differ

Farinotti Millan
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Our confidence in global datasets is limited by a paucity of validation data that address
issues pertaining to noise, bias, and uncertainty!
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Velocity and ice thickness impact our ability to
calculate the climatic mass balance

Gulkana Glacier climatic mass balance as a function of elevation
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Field Measurements

ALCUmU'ation Zone

3. ng-cost GP
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1. Time-lapse
cameras

2. Ground-penetrating radar
4. Monitored ablation stakes




Field Measurements

Total Mass Balance:

btot

Climatic Mass Balance:

dh
Flux Diverg
Vg=V

Time-lapse cameras
Low-cost GPS systems

Monitored ablation stakes
Low-cost GPS systems

Time-lapse cameras
Ground-penetrating radar
Low-cost GPS systems
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Integrating field measurements with existing data
products: Ice thickness

In-situ GRP transects 250
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Integrating models: Velocity

250 = * Also deriving our own velocity products
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A theoretical approach to the climatic mass balance

* How accurate do ice thickness and velocity need to be?

» Start with idealized glacier and derive physically consistent ice thickness and velocity
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A theoretical approach to the climatic mass balance

* Then, introduce noise and/or bias into the data and see how it affects our results

Flux divergence from noisy (A),

smoothed (B), and corrected (C) inputs Overestimation bias effect on flux divergence
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A theoretical approach to the climatic mass balance

* Then, introduce noise and/or bias into the data and see how it affects our results

Flux divergence from noisy (

A),

smoothed (B), and corrected (C) inputs

Overestimation bias effect on flux divergence
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Takeaways and Conclusions

« The impacts of glacier mass loss are ubiquitous: understanding glacier response to
the climate has implications for billions of people across the globe

« Glaciers are losing mass at unprecedented rates as a result of climate change, and

new, systematic remote sensing offers a unique ability to monitor mass loss
globally

 However, our ability to resolve the climatic mass balance is hindered by noise and
bias in data

* Field measurements and models provide opportunities to validate and improve
remote sensing data products, but integrating these products is still a work in
progress!

Carnegie
Mellon
University
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Next Steps

* Increase complexity of synthetic glacier study
* Increase model complexity for deriving velocities

« Assess potential effects of glacier processes (avalanching, wind distribution, firn
compaction) on stake observations

* Obtain new/more field data!

* Apply methods to other glaciers in Alaska

Carnegie
Mellon
University



Thank you! Questions?
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