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Background

* Mountain glaciers are rapidly changing

* We can measure surface elevation change for all glaciers on Earth (e.g., Hugonnet et al.
2021, Jakob & Gourmelen 2023)

* We need to translate distributed elevation change observations into climatic mass
balance observations that can constrain global glacier models
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e Field methods?
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We have no scaled constraints on modeled climatic mass balance which is crucial for
process-based understanding of present and future glacier changes
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We have no scaled constraints on modeled climatic mass balance whichis.  ground-truth
process-based understanding of present and future glacier change data is essential
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Mass balance: all methods
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Expansive fixed GNSS network'in
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IELGEVVENE

« Afixed GNSS system with a monitored ablation stake accurately derives all elements of
the continuity equation

« Sub-seasonal changes in flux divergence complicate the problem: requires
contemporaneous data

« Remote sensing data products are insufficient on Gulkana Glacier

Next Steps
 Incorporate higher-order flow models?
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Stake height from GNSS-reflectol

GNSS-reflectometry estimates antenna height relative to a surface by using the signal-
to-noise data from direct and reflected GPS signals
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GNSS setup components
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Three methods for climat
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GPS position accuracy
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The flux divergence is a critical €

needed to obtain the climatic mas: -
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“Glacier mass change due to “Glacier surface elevation “Dynamic contribution to
the climate” change” glacier surface change”
“Surface (+ internal) mass “Change in glacier “Elevation change from a
balance” thickness” difference in mass flux”

NOTE: the climatic mass balance and the total mass balance are equal glacier-wide, but

vary spatially across the glacier
24
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