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Roughly 25% of global mountain glacier mass loss is from 
Alaska. Large-scale remote sensing offers unprecedented 
opportunity to monitor glaciers, but in-situ observations 
are critical to validate remote sensing data products.

This study: 
• utilizes remotely sensed and modeled surface velocity, 

ice thickness, and elevation change to estimate the 
climatic mass balance gradient for Gulkana Glacier

• evaluates the performance of different products 
compared to in-situ measurements

• begins to integrate modeled products to replace poor 
quality or missing data

INTEGRATING FIELD MEASUREMENTS AND MODELS

• Total mass balance is surface 
elevation change, which is a 
combination of mass change 
from accumulation/ablation 
and ice flux. 

• Climatic mass balance 
accounts for ice flux to reveal 
melt from surface processes

ሶ𝑏𝑐𝑙𝑖𝑚 = ሶ𝑏𝑡𝑜𝑡 + ∇𝑞

where ∇𝑞 = ℎ(
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• Surface velocity greatly impacts the flux divergence and thus the climatic mass balance
• However, no individual surface velocity products generate flux divergences and climatic 

mass balances consistent with field observations

• Physical intuition and point velocities constrain realistic 
model outputs from Icepack (Shapero et al. 2021)

• Apply Bayesian inference for a composite velocity
• use modeled velocity as prior estimate 
• use remote sensing velocities and their 

uncertainties as observations 

Methods are still being developed; no composite exists yet

Millan

(model 
output)

• Climatic mass balance gradient is sensitive to velocity 
input

• Large disagreements between products highlight 
inaccuracies in subregions of glaciers (see below)

• Climatic mass balance is not as sensitive to ice 
thickness input, but ice thickness is essential to 
modeling velocity

• Results highlight the need to quality control velocity 
data before calculating climatic mass balance

・Hugonnet et al. (2021) Nature・Farinotti et al. (2019) Nat Geosci
・Millan et al. (2022) Nat Geosci・NASA (2019) its-live.jpl.nasa.gov
・Friedl et al. (2021) Earth Sys Sci Data・Shapero et al. 
(2021) Geosci Model Dev・Maussion et al. (2019) Geosci Model Dev
・RGI Consortium (2017) doi:10.7265/N5-RGI-60・USGS (2019) 
doi:10.5066/P9R8BP3K・Cogley et al. (2010) Int Hydrol Prog
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• Bayesian inference for composite velocity product

• Simplify flux gate approach: climatic mass balance 
from few elevation bins where velocity products agree

• Assess potential effects of avalanching and wind 
distribution on stake observations

• Assess potential effects of firn compaction

• Integrate time-lapse cameras for in-situ elevation 
change and velocity fields

• Climatic mass balance gradient for other Alaska 
glaciers
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For Gulkana, ice thickness products…
• underestimate thickness along centerlines
• overestimate thickness at margins

Validity of velocity products 
based on aspect

Validity of velocity products 
based on magnitude
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Datasets:
• Glacier inventory (RGI Consortium 2017)
• Elevation (Copernicus 2021, USGS 2019)
• Elevation change: 2015-2019 (Hugonnet et al. 2021)
• Surface velocity: 2017-2018 (Millan et al. 2022, MEaSUREs 

ITS_LIVE; NASA 2019, RETREAT 2021)
• Ice thickness (Millan et al. 2022, Farinotti et al. 2019)

Location

AU AB B D
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e Stake 18.5 23.9 39.7 53.9

Millan 15.9 5.3 26.3 46.7

ITS_LIVE 14.7 13.8 13.0 20.5

RETREAT 6.1 3.3 3.9 20.9

Model 10.8 10.6 13.1 61.7

Velocity at Ablation Stake 
Locations (m/a)

(shallow-ice 
approx.)

Three velocity products are used with the Millan ice thickness to estimate climatic mass balance
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In-situ GRP transects
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