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1.0 Abstract

Within the field of hydrokinetic energy harvesting, passive membranes have shown promise as
devices suitable for energy capture. As much about the behavior of shape-morphing foils is still
largely unknown, this project develops from previous work analyzing how compliant membranes
can be employed to maximize the efficacy of tidal flow energy harvesting. This work
investigates the silicone elastomers used for these compliant foils, combining a series of uniaxial
tests, ring-down experiments, and computational modelling to comprehensively characterize the
material. These findings will be used to predict and understand how the material behaves as a
hydrodynamic foil in energy harvesting applications. Furthermore, the approach provides a
simple and cost-effective method for characterizing similar hyperelastic materials. The work
shows the potential of a mechanical oscillator to estimate the elastic modulus at a given strain
and the damping coefficient for hyperelastic materials with some viscoelastic properties. This
method can quickly be employed to estimate both of these values utilizing readily available
tools, and effectively characterize nonlinear, hyperelastic materials.

2.0 Introduction

As the carbon concentrations in our atmosphere continue to increase, the negative effects
associated with anthropogenic climate change will only become more profound. Increased global
temperatures pose a threat to all sources of life: as unpredictable weather patterns disrupt
ecosystems across the globe, rising sea levels flood coastal regions, and warming oceans
endanger aquatic life. With over 75% of all greenhouse gas emissions resulting from fossil fuel
consumption, there is a dire need to meet the global energy demand with renewable energy
sources.!!

Within the sphere of sustainable energy harvesting, the capacity of hydropower as a source of
energy is immense. The potential of rigid foils in hydrokinetic energy extraction has become
widely accepted as a promising area in energy harvesting from low-velocity, high-volume flows.
Oscillating hydrodynamic foils represent a minimally invasive, more robust, and versatile source
of renewable energy compared to standard rotary turbines. Not only do they reduce the impact on
marine environments, they can also be deployed in shallower water, and can harvest tidal current
energy from the entire span of a channel. While these rigid foils struggle to match the efficiency
of standard rotary turbines, passive shape-morphing ‘compliant’ foils offer a way to bridge this
gap. The ability for the hydrodynamic foil material to camber and interact with the flow
generates stable leading edge vertices (LEVs), which increases the lift forces driving the foil.
Initial research shows that silicone-based polymer membrane foils can increase the efficiency up
to 260% compared to rigid foils."?!

While preceding work has focussed on the fluid-foil interactions—analyzing LEV formation and
shedding—the material properties of the silicone polymer membranes used for the foils has not



been fully defined. Thus, the relationship between material behavior and experimental conditions
cannot be fully understood. The idea of this work is to adequately characterize the material and
to gain a comprehensive understanding of its properties through a series of static uniaxial
experiments and dynamic oscillation ring-down method. These realizations could help establish a
connection between optimal energy harvesting conditions and hydrofoil material properties, and
explain phenomena seen in future experiments and ultimately during the implementation of such
foils in tidal waters. Furthermore, the viscoelastic behavior of silicone polymers could lead to
energy losses that limit the foil efficiency: the relevance and magnitude of these losses need to be
properly identified as well.

In general, this work has implications beyond its intrinsic scope. The procedures carried out
represent straightforward and cost efficient methods that serve as a template for the study of
similar hyperelastic material studies. This is especially relevant when access to expensive
machinery is limited, as the procedures utilize accessible and common materials. Similar
rubber-like, hyperelastic materials that can be studied using this method are materials with
long-term flexibility under a variety of loads, and have applications as car tires or door seals,
among other uses.

3.0 Background

3.1 Silicone Polymer Material

Silicone rubbers are used in a wide variety of products and technologies, ranging from
household, domestic objects to advanced, high-performance technologies.” The favorable
material properties of silicone elastomers such as a resistance to tearing, thermal and electrical
resistance, robustness, and overall material strength and longevity lend themselves to large
ranges of applications. In our case, this material is used as a compliant membrane in
hydrodynamic foils for energy harvesting.

The specific characteristics of silicone polymers can easily be altered and manipulated for the
desired use. In order to obtain the solid silicone polymer material desired, uncured liquid silicone
must be cross-linked to form a covalent polymer network. Liquid silicone undergoes
platinum-based addition curing reaction called hydrosilylation, in which a polymer base is mixed
with a diluted crosslinker. Each premixed part, ambiguously labeled ‘Part A’ or ‘Part B’, is stable
and unreactive. The dilution of the cross-linked part is essential in preventing immediate, local
curing and inconsistencies in the overall material shape and strength.

Contrary to standard polymers with a carbon spine, silicone rubbers consist of alternating
silicone and oxygen units in their backbone. This unique backbone structure accounts for many
of its advantageous properties including high flexibility, softness, and thermal stability. This
backbone is bonded to methyl groups (CH,). The entire structure is shown in Figure 3.1 below.
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Figure 3.1. Silicone polymer molecular structure
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Figure 3.2. Ideally linked silicone network structure

The ideal silicone polymeric network is represented by a grid structure with cross-linkers
connecting polymer chains (Figure 3.2). The effects of this grid structure can be envisioned by
viewing these polymer chains as springs. Denser cross-linking will increase the number of spring
units per area, which in turn increases the material strength. In general, the stiffness of this
system of springs is the Young’s modulus, E, which is proportional to the material density. This
serves as the basis of Hooke’s law:

o=~Fe (1)
Assuming incompressibility, the Young’s modulus is related to shear modulus, p:
E=2u(1+v)=3p (2)

Note that the incompressibility assumption, which indicates no change in volume under
deformation, is standard for rubber-like materials and is represented by a Poisson’s ratio, v, of
0.5. For silicone elastomers, Hooke’s law only holds true in the linear region, up to 10% strain.
Beyond this small initial region, the onset of strain-softening and strain-hardening phenomena
create a non-linear stress-strain relationship. Ultimately, these materials can reach strains well
beyond 300-400% (in some cases exceeding 1000%) and stresses around 1 MPa (reaching up to
13 MPa).b!

For non-ideal elastomers, the relationship between stress and strain is more complicated due to a
dependence on strain rate. Moreover, many commercially available silicone polymers include the
presence of various fillers, which enhance the material tear strength and tensile properties but



further contribute to some complex, non-linear phenomena. This includes the Mullins effect,
which indicates changing stress-strain curves under steady-state, cyclic loading at increasing or
decreasing maximum strains.*! This effect shows that, when the material is stretched beyond a
previous maximum stretch, it becomes softer. Subsequently, the permanent set of filled
elastomers shows elastomer elongation following static stretching for an extended period of time.
This results from a reorganization and curing within the material, so that it reaches a new
zero-stress molecular state. However, this effect is not necessarily permanent and the material
can return to its original zero-stress state over time. Finally, the Payne effect is also noticeable in
filled silicone elastomers. The effect shows a shift in shear modulus as strain increases. The
phenomena indicates an initial material storage modulus at low strains (<1%), followed by a
rapid decrease in modulus due to breaking macromolecules into subnetworks, and ultimately a
constant storage modulus exceeding around 10-20% strain.'®! In turn, the governing equation (2)
above can be rewritten to include influences from these effects under small strains:

o(e, %) = f(e) - g(&, %) - h(e, emar) (3)
where f(x) is the simple linear relationship from (2), g(e,‘ii) indicates a dependence on the

strain rate from the Payne effect, and h(e,€,,4,) captures softening due to the Mullins effect.

As the Mullins effect, Payne effect, and permanent set can cause substantial changes in data
repeatability and consistency, caution must be taken during experimentation to identify if these
effects are present and how they might affect results. In general, some precautions can be taken
to minimize these nonlinear phenomena. Ample rest time should be given to reduce the impact
of the permanent set, and elastomers should be stretched significantly (beyond what will be
experienced during testing) to ensure they have already experienced the maximum strain. Finally,
some elastomers with a strong Payne effect will soften at a specific strain rate—this should also be
addressed and looked out for.!”]

3.2 Material Modelling

The modeling of various phenomena observed in materials is the basis of understanding and
predicting material behavior. Furthermore, accurate material modelling and prediction can aid in
the design and development of new materials for specific applications. Although the concept of
material modeling is centuries old, it remains a dynamic field, with new models constantly being
proposed and optimized.

Although silicone rubbers possess both viscous and elastic behaviors, the effects are dominated
by the elastic contributions. Thus, viscous effects can be negated entirely if strain rates are not
too high. Under this assumption, hyperelastic models can be used to define and fit data.
Additionally, filled elastomers tend to behave as hyperelastic materials and are commonly
modeled as such.®) Choosing a model is not always trivial, as each has advantages and
drawbacks for different types of hyperelastic materials. In general, however, these models all aim



to capture the non-linear stress-strain relationship observed for hyperelastic materials in a given
strain range. These models can be split into categories as mechanistic models that derive
equations from underlying material mechanics, phenomenological models that describe observed
properties, and hybrid models containing mechanistic and phenomenological aspects. Note that,
for soft, rubber-like materials, we will assume incompressibility.”’

3.2.1 Overview: General Methods

A few overarching methods form the basis of all hyperelastic models. Although these
relationships are well known and outlined in textbooks covering hyperelasticity, they are
nonetheless important to restate here for completeness and understanding. Overall, the upcoming
sections follow the frameworks outlined in Applied Mechanics of Solids"™, Mechanics of Solid
Polymers!"”, and a publication on the assessment of hyperelastic material models!..

In general, hyperelastic materials can be explained by the relationship between strain energy, W,
and strain invariants, I,, I,, and I,. All of these models start from the relation

W=f(11a12a13) (3)
which ensures perfectly elastic material behavior. These invariants are equivalent to various
combinations of the principal extensions, A,, A,, and A;:

I =0+ + ] 4)
I, =MW+ 505 + 50 (5)
I, = K35 (6)
A=gc+1 (7)

Furthermore, assuming incompressibility and uniaxial extension, we can further obtain the
following relationships 8 and 9, respectively:
A, = 1 )
7‘1: A, 7‘2 = 7‘3 = 'ﬁ 9)
Equations 8 and 9 hold true during uniaxial testing, and are used to derive the uniaxial
stress-strain relations for each model. The general form for particular models are guided by
experiments, but all include variables that can be used to define a particular material. For each
model, materials are assumed to be isotropic; this means that material behavior is independent of
orientation with respect to loading. Ultimately, particular stress-strain relationships for every
model are obtained by differentiating the strain energy density.!'”

3.2.2 Mechanistic Models

One of the simplest hyperelastic constitutive models available is the neo-Hookean model.!') This
model is similar to Hooke’s law yet predicts nonlinear behavior of certain materials at larger
strain rates. The neo-Hookean model is accurate for various cross-linked polymer materials.
Initially, at low strains, polymer chains can move relatively freely but eventually the chain will
be stretched to a maximum point and the cross-links will prevent further stretching. Thus, the



model shows a gradual increase in the elastic modulus of a material. This model can be used for
rubber-like materials during the initial linear range (usually below 20% strain), but is generally
known to be inaccurate in predicting phenomena at higher strains."?I'¥] The strain energy density,
W, for a neo-Hookean solid is:

- K )
W=21-)H+30 -1 (10)
where p, and K, are material constants and I, is the deviatoric first invariant of the left

-2/3

Cauchy-Green deformation tensor (note that I, =J I, ). The stress-strain relationship is as

follows:
-2/3 7
0= B D+K,( ~ DI (11)
where B is the left Cauchy-Green deformation tensor, I is the identity matrix, and J is the
Jacobian of the deformation gradient. For incompressibility, J must be 1 to preserve volume. For

isotropic, incompressible materials, the uniaxial stress-stretch relation can be derived by finding
the Cauchy stress differences (assuming incompressibility) and assuming no traction:

— o =Wy AW, G =Wy W,
0y, 0'33—)\,1W1 Ay e and 0,, — 033 =1, 7 Ay . (12)
aw; _
@, = Wik

Oy 7033 = M10\% - )‘i) and Oy =033 = “q(}\% - 7@) =0
0,=0=, o }) since 0,, = 05, =0 (no traction)
Opng = £ == 55) (13)

where o, ¢ i1s nominal stress.

A more complex mechanistic model is the Arruda-Boyce ‘eight-chain’ model.l'"'3) The
Arruda-Boyce model is motivated by the microstructure of rubber-like polymers. The model is
based on a volume element with eight polymer chains, with each chain linking on a diagonal
from a corner. The strain energy density is given by:
W=n(d -3+ 20, -3+~ ).+ Eg - 1) (14)
2V 2082 ! 1050p* ! 2
where , 3, and K are material properties. The Cauchy stress for the Arruda-Boyce model for

an incompressible solid is:
331,

11

o=wl+ e + 756" +...)B (15)

Furthermore, the uniaxial stress can be derived as:

2 1 331,° 2
0, =0 =W _i)(1+5?+F[154+"')=C( - 3)
Oppe = £ =CO— %) (16)
2

where C = (1 + L + &114 +...). Recall that, from our general methods and assumptions

s> 175

above, I, = I }% , so C is variable with a dependence on stretch. Under small deformation, the



material property u can be taken as the shear modulus. Initial shear modulus can be related to
shear modulus by:['%!

_ 3 . -9 513 42039
Mo = (1 + 5p> * 175p* * 8756°  67375p° (17)

The Arruda-Boyce model is advantageous under high stretch conditions. The model only
requires three input parameters (including the bulk modulus, K) and has no dependence on the
second invariant, I,. It is similar in accuracy to the Gent model.['”

3.2.3 Phenomenological Models

The Mooney-Rivlin model is a two parameter phenomenological model that essentially aims to
improve the accuracy of the Neo-Hookean model.Pl'U8 Ag a result, the Mooney-Rivlin model
is a linear combination of two invariants of the left Cauchy-Green deformation tensor, as
opposed to only one like the Neo-Hookean model. The strain energy density is:

- - K

W=2U-H+20,-3)+30 -1 (18)
where y,, W,, and K, are material constants Note that the first invariant of the left Cauchy-Green
deformation tensor 7, =J 2By , and the second invariant I, =J 4 312. For an incompressible

Mooney-Rivlin solid:
o= +1,%)B—-wB B -l +2u,1,)I (19)
In the case of uniaxial tension, a similar derivation utilizing Cauchy stress difference shown in
Equation 12 with simplification outlined in Equation 9 can be used to show:
0y = 0= + FIA — 1)
Oppe = 2= (1y + IR~ %) (20)
In the case of a Mooney-Rivlin solid under small strains, the shear modulus, p, can be related to
the equation by:
Bo=py oty 21)
This two-parameter model is particularly useful in obtaining a value for shear modulus, yet the
model can become inaccurate at strains above 100%.

The Yeoh model, also known as the reduced polynomial model, is another model for nonlinear
materials that is only dependent on the first strain invariant, I, (for incompressible materials). It
is given by:

N — i N
W=YCuol, -3 +3% +0-D* (22)
i=1 k=1 *

where C,, and D, are material properties. Solving for uniaxial stress for N =3 and assuming
incompressibility:

N .
0 =24%B where 4% = ¥iC,(1, - 3)"" (23)
i=1



N i
0,=0=20" - YiC,U, -3
i=1

0= 2007 = 1)(C o +2C (02 + 1) +3C, (0% + 2))
Opg = & =200 = £)(C g +2C1,(1 + 1) +3C3 (02 + 1)) (24)
In the Yeoh model, C,, must be a positive value and can be interpreted as half of the shear
modulus, w=2C,,. For curve-fitting purposes, it is generally a rule-of-thumb to take
C,, == 001C,,and C,, =—0.01C,,. In order to take advantage of superior aspects of the
Yeoh model, a value of N =3 is typical and effective for most practical applications, and is

hence the solution shown above. It can be noticed that, when N = 1 the equation is equivalent to
the neo-Hookean model.['”]

Finally, the Ogden model is a phenomenological hyperelastic form that is directly based on
principal stretch ratios instead of strain invariants.!'“l'7U%1 [t follows the form:

W=y Bk, -+ -1 25)
i=1

253 While the general solution to

where 1, a, and K, are material properties, and Z =MNJ
obtain the stress is lengthy, it follows the same formula: deriving strain energy density with
respect to each principal stretch. Important to note with the Ogden model, is that for N = 1 and
o =2, the formula is identical to the neo-Hookean form. Furthermore, for N =2, o, =2 and
o, =— 2, the model reduces to the Mooney-Rivlin form. For an incompressible material under

uniaxial tension, the Ogden stress takes the from:

N a —'LQ
o,=0=Y wA" =L 2"
i=1

NH- a; g
o =%=Z7\‘(7\’—7x2") (26)

=

—_

Under small strains, the shear modulus, p, is:
N
=2 (27)
i=1
The Ogden form has shown strong correlations with uniaxial testing data for large strains, being
accurate up to 700% if an appropriate material is being modeled with proper parameters.!'”!

3.2.4 Hybrid Models

The Gent model is based on the concept of limiting polymer network stretch.”!2%! In this aspect,
it 1s similar to the Arruda-Boyce model. The Gent model is aimed at characterizing materials
under large deformation. The constitutive equation is:

i} I _3 2*
W == B2in(1 - ==) + &( — in())) (28)

10



where W, J,,, and K are shear modulus, a dimensionless ‘locking’ parameter used to limit chain
extensibility under large deformation, and bulk modulus, respectively. Stress can be derived as:

o= #B+K(J— DI (29)

For incompressible, uniaxial tension, the stress becomes:
2 "
o, =0=0 - HizEs)

m—1+3

O = &= = () (30)

m—1+3
where I, = A+ % . Note that, if J,, — inf, the solution is identical to the neo-Hookean form. In
general, the Gent model is advantageous for its simple nature and high accuracy: specifically that

it is a two-parameter model (excluding bulk modulus) with one parameter being shear modulus
itself.

3.2.5 Hyperelastic Model Comparison

Overall, most of these models are effective for certain applications and over specific stretch
ranges. However, a comparison for the predictive capabilities of each model is shown below in
Table 3.1 to give a better sense of model robustness and efficacy. The number of material
parameters required to fully define each model given an incompressible material is also
presented in Table 3.1. While the constants obtained and material parameters vary for each
model and often have arbitrary meanings, specific parameters such as shear modulus, p, can be
directly compared across models. From equation 2 above, elastic modulus can be calculated for
those hyperelastic models in which shear modulus is a parameter.

Table 3.1. Overall Predictive Capabilities of Select Hyperelastic Models!'"

Hyperelastic Model R*-Prediction Material Parameters
Neo-Hookean 0.794 1
Arruda-Boyce 0.973 2
Mooney-Rivlin 0.843 2

Yeoh (N=3) 0.980 3
Ogden (N=3) 0.998 6
Gent 0.972 2

3.3 Mechanical Oscillator

Numerous methods and instruments have been developed to measure the properties of materials.
While each method ranges in complexity, they fall into a few primary categories: static and
dynamic methods. Static methods include tensile tests such as uniaxial stress or uniaxial strain
tests and flexural testing methods, although this is only ideal for brittle materials. Dynamic
methods include resonance and impact excitation methods that use natural frequencies to

11



calculate elastic modulus. Techniques include continuously vibrating beams at select frequencies
to sweep for resonance or by striking a beam and recording the sound to determine frequency.
However, these methods themselves are also not optimal for elastic materials. Furthermore, these
well-developed methods tend to involve expensive machinery that is not widely accessible for
use. Even the most common tensile testing instruments, such as Instron machines, for example,
are very expensive and typically only available to larger institutions.

A mechanical oscillator, however, is a low-cost, accessible, and straightforward method to
determine the elastic modulus of elastic materials. Mechanical oscillators involve a cyclic
conversion between potential energy stored in deformed elastic materials and kinetic energy
from a mass in motion. In this study, the potential of a mechanical oscillator for characterizing
rubber-like silicone elastomers is examined. The findings could provide another alternative to
understanding the stress-strain relationship of elastic and hyperelastic materials.

Much like other dynamic methods, the frequency of cyclic motion from the mechanical oscillator
can be used to estimate elastic modulus. The governing equation for these systems vary based on
their configuration. In general, however, the constitutive equation will include an inertial term
dependent on acceleration, a restoring force dependent on material stiffness, and a damping term
dependent on strain rate. The magnitude of this damping reflects the material damping
coefficient, and assumes inefficiencies between the periodic conversion of kinetic and potential
energy is the result of the material properties and behavior instead of physical aspects of the
oscillator configuration such as friction or air resistance. The validity of this assumption will
later be discussed retrospectively as well.

3.3.1 Horizontal Configuration

For the purpose of this study, a horizontal mechanical oscillator configuration was designed to
meet two primary criteria: a straightforward set-up in which data can easily be recorded without
expensive machinery and the material always acting in tension. A biaxial configuration, for
example, would make it difficult to effectively track mass position and out-of-plane forces could
create motion that would require multiple, synchronized cameras to track. This would complicate
the method in a way that would defeat the purpose of the mechanical oscillator as a simple
method to estimate material properties. The chosen horizontal configuration, shown in Figure 3.3
and Figure 3.4 below, was used to satisfy both of these conditions.
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Figure 3.3. Side view of horizontal mechanical oscillator system
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Figure 3.5. Deformed state and motion of horizontal mechanical oscillator system

F= mff 31)

F = F(e) +F(n,‘§i) +F(g) (32)

m‘ff ——2EA sm(e)((’“ @)L Ly — 24, (—f—) §cos(P) — (33)
d +Li) L,

0= zan*l(fi) and ¢ = tan (%)

The basic law governing the horizontal mechanical oscillator is Newton’s Law (31). From the
figure and knowledge of the materials being used, there are three influences on the oscillating
mass: a force from the polymer membrane in tension that is dependent on strain, a viscous
damping force dependent on a material damping constant and strain rate, and a constant force
due to gravity. In these equations, € is strain, 1) is a material property describing viscous
damping, g is acceleration due to gravity, m is mass, E is elastic modulus, A  is membrane
cross-sectional area, L; is initial unstretched membrane length, and L, is initial horizontal
membrane length in the mechanical oscillator with an applied pre-stretch. Since the oscillator
mass i1s much larger than the membrane mass, the configuration can be idealized as a
spring-mass-damper system and the vibrational mechanics and wave propagations through the
membranes are negligible.

13



For the horizontal oscillator configuration chosen in this experiment, the governing equation is
shown in Equation 33, and derived from the schematic. The force exerted on the mass due to
material stretching is equivalent to the product of the elastic modulus for a given strain and
cross-sectional area. The non-vertical forces from the membranes offset, so only forces in the
vertical direction dictate the movement. Due to the range of the tangent inverse, — ¥ <0 < %

and — 1 <sin(0) < 1, so the force will act upwards when x <0 and downwards when x> 0.
Furthermore, the force due to viscous damping will oppose the velocity, with no direct
dependence on position. Thus, with the same range of ¢ as for 0, 0 < cos(p) <1and the
direction of this force contribution depends entirely on the direction of velocity. These angles are
also depicted in Figure 3.5. Lastly, there is a constant gravitational force directed downwards.

The following system of differential equations is solved for position and velocity. Taking x, = x
and x, = x’, the governing equations above become:
x'=x,

_ 2,72 1/27 —
x," = (= 2EA,sin(tan l(%t))((lLLLZ’_L") — 2nA,x,cos(tan 1(%))((7;)1/_1) — mg)/m
X1 7L 0

Mass, amplitude, initial length, and pre-stretched length are all prescribed constants. Elastic
modulus and the viscous damping coefficient are estimated and ultimately determined through
curve-fitting on MATLAB. Note that, given the small strain ranges present in the set-up, we
assume linear elasticity so elastic modulus is constant. Multiple tests are required with varying
pre-stretch to investigate and estimate the elastic modulus at another strain range. The initial
conditions x(0) =— amp and x'(0) =0 are applied to an ordinary differential equation solver
(ode45) in MATLAB and predicted position and velocity as a function of time can be plotted.
These solutions can ultimately be compared to experimental data using MATLAB video tracking
for position (x,), which can subsequently be used to determine velocity, x,. Unknown constants,
such as 1, can be estimated by comparing the curves and seeing which values fit the
experimental results to computational predictions.

3.3.2 Vertical Configuration

In addition to the horizontal configuration outlined above, a vertical oscillator configuration is
also tested. A vertical configuration is chosen in order to test material properties at higher strain
rates. While the small angles from oscillation in the horizontal configuration limit strain rates,
the vertical oscillator is used to achieve high strain rates as all movement of the mass is in line
with the membrane. The strain rates achieved through this configuration can far exceed the strain
rates from uniaxial testing instruments, and will be used to estimate the effect of viscous
damping effect at higher strain rates. The set-up is outlined in Figure 3.6 below.

14
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Figure 3.7. Deforemed state and motion of vertical mechanical oscillator

In order to remain in tension throughout movement, the mass is oscillated such that it will always
remain well below its initial, unstretch length, L . The governing equation for this system is

derived in a similar manner to the horizontal system, and the solution is shown in equation 34.

Iy _ LixLoy _ o dx 1 _
mes =EA, (=) =Y, . ~ Mg (34)
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As the membrane undergoes large changes in stretch under this configuration, the initial resting
stretch (L;) and amplitude of oscillation is chosen based on uniaxial results for an approximately
linear region of stress-strain. This assumption is approximately true at stretches ranging between
1.5<A<25. Thus, elastic modulus, E, can be estimated as a constant-the validity of this
assumption will be determined by the ability to predict and replicate motion computationally.
The mass is tracked by a slow-motion iPhone camera and the system is solved on MATLAB as
outlined in the previous section.

3.3.3 Mechanical Oscillator Testing Approach

Ultimately, experimental data can be used to estimate the force exerted on the mass by the
sample over a range of strain values. For the horizontal configuration, a number of repeated tests
need to be taken with varying initial strain lengths to estimate the elastic modulus at any given
strain. Although these strain values are less extensive than the full range obtained by a uniaxial
test, a stress-strain relationship can be established for this area. Increasing and decreasing
masses, pre-stretch, and initial excitation amplitude will change the range of strains being tested,
and a stress-strain curve can be built over a greater range of strains. Results obtained via this
method can be fit with the hyperelastic models mentioned in the previous section and compared
to the results from uniaxial testing to determine the validity and potential of this method as a
low-cost and accessible alternative to sophisticated uniaxial testing instruments for determining
the material properties of hyperelastic materials. The decay in oscillation amplitudes can be used
to estimate a damping coefficient for the material as well.

Furthermore, the vertical configuration will also be used to test samples at very high strain rates:
notably higher than the uniaxial testing instrument. This test can be used to examine the viscous
damping effect of the material at high strain rates, and determine if these effects are noticeable at
the obtained strain rates. Ideally, the viscous damping coefficient can be calculated from this
method—confirming the results obtained from the horizontal configuration at even higher strain
rates.

4.0 Materials and Methods

4.1 Silicone Polymer Synthesization

Silicone polymer membranes were synthesized using MoldStar Series: Platinum Silicone Rubber
Part A, Mold Star Series 16 Fast: Platinum Silicone Rubber Part B, Mold Star Series 15 Slow:
Platinum Silicone Rubber Part B, and BJB Enterprises TC-5005 Part C. These will be referenced
as Part A, Part B fast, Part B slow, and Part C, respectively.

Proper amounts of each part are measured to contain equal mass of Part A as Part B fast and
slow, and Part C is variable as a percentage of the total amount (Part A, Part B fast, and Part B
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slow). In general, relatively large amounts of all parts were used to minimize error and minor
deviations in net weight between parts. Equal parts A and B (fast + slow) were taken to ensure an
ideal ratio of polymer to cross-linkers in the mixture, and Part C was added based on the desired
material stiffness and application. All three parts were mixed thoroughly, degassed at around
-0.85atm for five minutes to remove air bubbles. It is important to note that, adding no Part C to
the mixture makes degassing very difficult and can lead to air bubbles in cured membranes,
while adding too much Part C (over 100%) can lead to very soft membranes that tear easily.

A leveling device was calibrated and set to a height at least 300um above the ultimate desired
membrane thickness, usually around 750um. Liquid silicone was then poured onto a flat, clean
glass pane and the leveling device was steadily pulled across the glass and set aside. Liquid
silicone was then left to cure at room temperature overnight. Desired membrane samples were
laser-cut and carefully removed from the glass.

4.2 Compliant Membrane Foil Construction

Constructing compliant membrane foils was a careful process with each step requiring focus to
maintain a clean, uniform hydrodynamic foil. A rectangle with dimensions 150mm x 425mm
was laser-cut but not removed from the glass. Instead the surrounding excess membrane material
was removed. Four wood planks roughly 1” wide and longer than the rectangle were obtained,
and each marked with a line down the center. A thin, uniform layer of silicone adhesive glue
(Sil-Poxy Silicone Rubber Adhesive, or Gorilla 100% Silicone Clear Sealant) was added to one
side of one of the planks. A paper towel was aligned along the edge of the membrane rectangle,
and the wood plank was glued onto the membrane so that half of the plank was on the membrane
and the other half on the paper towel. Excess paper was cut off. The process was repeated for the
other side, weights were placed on top of the planks, and the glue was let to dry for two hours.
The exact width of the membrane between the planks was measured and recorded.

Wood planks were then removed from the glass with the membrane, using a thin, metal spatula
to help lift the membrane from the glass when necessary. Glue was carefully added to any areas
where the membrane was not completely attached to the plank. Once the membrane was
separated from the glass, it was flipped over and the other two wood planks were glued to the
membrane and planks on the other side, sandwiching the membrane between each pair of planks.
The wood planks were glued to a stretching rig, and fixed in parallel at a desired pre-stretch,
usually 10 or 15%.

Two thin steel frames were obtained to serve as the frame of the foil. Gorilla Epoxy Clear glue
was mixed and applied in a thin layer around one side of each frame, and let harden for 15
minutes. All-purpose Krazy Glue was added onto the hardened epoxy on one frame, and
carefully placed glue-side down in the center of the stretched membrane. The frame was lightly
and repeatedly pressed down on all sides, and a thin layer of Krazy Glue was applied around the
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outside of the frame. The glue was let to dry for 10 minutes, the stretching rig was flipped over,
and the process was repeated on the other side with the second steel frame. The finished foil was
the cut from the stretching rig and excess membrane material was removed with the laser cutter.
An example of a finished foil is shown below in Figure 4.1 below.

Figure 4.1. Compliant membrane hydrodynamic foil

4.3 Uniaxial Testing

Dogbone-shaped samples were used for uniaxial testing (Figure 4.2). Sample thickness was
measured and recorded using calipers, and a rapid manual pre-stretching was applied roughly 5
times to each sample to minimize the Mullins effect. Samples let rest for a few hours, and were
then carefully placed between two plates on either side using thick double-sided tape to hold the
sample in place. Samples were fastened into an Instron uniaxial testing machine, and
force-displacement measurements were taken over a wide range of strains and strain rates. Data
were converted into stress and strain separately based on sample dimensions.

________ L —
()

I 38 mm |

Figure 4.2. Uniaxial testing ‘dogbone’ sample
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4.4 Mechanical Oscillator Testing Instrument

A single long rectangular sample was used with the setup outlined in Figure 3.3 and Figure 3.4.
Masses were cut from a 1 mm thick sheet of lead of desired width and length equal to the
rectangle sample width. Thin, lead masses were fastened using tape to the center of the
rectangular sample on either side for even weight distribution and to minimize torque effects.
The precise length of each side was measured with a caliper. A cotton string, at least 20cm long,
was securely taped to the center of the bottom mass: this is an integral aspect of ultimately being
able to excite the system in a consistent and controlled manner.

Samples were then aligned and secured on either side to the testing rig, using binder clips to
securely hold end plates. The desired sample length (including pre-stretch) was applied with the
adjustable end of the rig. The zero displacement of the sample was measured and recorded. An
iPhone camera was held in place level with the sample and set to record with the slow-motion
setting. Samples were tested by pulling the cotton string directly downwards to the desired
amplitude, swiftly cutting the string with sharp scissors to minimize unwanted forces, and
recording the mass oscillating up and down (Figures 3.5 and 3.7). Video recordings were
post-processed on MATLAB, with the position of the mass being tracked throughout the test.

5.0 Results and Discussion

5.1 Uniaxial Studies

In order to use hyperelastic models to characterize the material, the material behavior must be
independent of the rate of testing. A series of tests was conducted in order to determine these
effects. First, samples were stretched statically (at very low strain rates) until failure to determine
their failure points and establish an operating range for future tests. Thus, future experiments that
required samples to be tested multiple times stayed well below these failure strains, so no plastic
deformation occurred in the samples. These results are plotted in Figure 5.1. Recall that, from the
procedure, all samples undergo a manual pre-stretching before uniaxial testing. This is to
eliminate the Mullins effect present in some rubbers experiencing strains for the first time. The
phenomena is shown in Figure 5.2, in which the sample did not undergo manual stretching
before testing.
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Figure 5.1. Membrane testing until failure Figure 5.2. Mullins effect in virgin sample

Even though all silicone membranes can stretch well beyond 4 times (A = 5) their initial length,
future testing was conducted over the range 1 <A <4 to avoid any permanent deformation or
changes in material molecular structure for even the stiffest silicone membranes.

The permanent set phenomena described in Section 3.1 also needed to be addressed. After
returning samples to original length after each test (A = 1), samples did not go back to their
initial taught state, and, instead, a noticeable elongation between 0-2mm was typical. Although
this permanent set was no more than 5% elongation, it was still necessary to take into
consideration. Thus, a wait time between repeated testing of the same sample needed to be
established to ensure accurate data and consistent results. Samples were tested under various wait
times (Figure 5.3) and data were fit on MATLAB with a smooth, continuous, differentiable
spline using the built-in MATLAB spline fitting ‘spaps’ function and applying appropriate
tolerance to ignore raw data noise (Figure 5.4). While the raw data were very consistent
regardless of wait time, infinitesimal elastic modulus was plotted over stretch by differentiating
the spline fits (Figure 5.5). In general, small changes in the stress-strain relationship can lead to
large changes in elastic modulus since minor deviations propagate when taking derivatives. As
can be seen in Figure 5.6, which shows the values of elastic modulus at the material initial and
final stretch, elastic modulus does actually increase slightly with longer wait times. Note that the
same analysis was conducted with silicone polymers containing only 50% thinner fraction,
which yielded similar results with a less significant permanent set. A conservative approach was
taken by establishing a 40 minute wait time for testing all samples to guarantee material recovery
for the softest membranes and minimize the permanent set phenomena.
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Figure 5.5. Infinitesimal elastic modulus Figure 5.6. Elastic modulus at low and high stretch

In addition to short-term sample recovery, the material was also tested over extended time
periods to determine whether loading had any long-term effects. This is especially important in
the context of energy harvesting from hydrodynamic foils, which would need to function over
longer periods of time. Samples were tested over a time span of three weeks and the results are
shown in Figure 5.7 below. To estimate the elastic modulus over short stretch ranges
(1.1 =A< 1.5) the curves were fit with the Gent model and shear modulus was converted to
elastic modulus using Equation 2 (Figure 5.8). Given the application of the material for energy
harvesting, the chosen stretch range is appropriate as compliant membrane foil deformation will
not exceed a semi-circular shape. Thus, in practice, the material will remain below Ay = 7\1.%‘

where A, is compliant foil pre-stretch (typically 1.05 or 1.1).
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Figure 5.7. 50% thinner sample repeat testing Figure 5.8. Young'’s Modulus from Gent
8 times across 3 weeks model fits for each test

The results show that, even over longer periods of time, the material does not decrease in
strength. In fact, each cycle was highly consistent and within 3% error. Most importantly,
however, the cycles did not trend over time, and instead fluctuated naturally within a safe range.
Although only data from one sample is shown above, a few different samples were tested which
further confirmed these findings.

After establishing a wait time for repeat testing, samples were tested under a range of strain rates.
Beginning with static analysis of 20mm/min, samples were tested repeatedly to 1600mm/min.
This corresponds to a strain rate up to 0.67 s™. This maximum strain rate approaches the limit for
the uniaxial testing machine. At least two samples with 20% thinner, 50% thinner, and 100%
thinner were tested at strain rates of 20, 50, 100, 400, 800, and 1600 mm/min. Figures 5.9 and
5.10 below show the results for the highest and lowest strain rates for the stiffest (20% thinner)
and softest (100% thinner) membrane samples.
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Figure 5.9. Uniaxial test results for 20% thinner silicone polymer at low and high strain rate
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Figure 5.10. Uniaxial test results for 100% thinner silicone polymer at low and high strain rate

The results are consistent over the full range of strain rates, with none of the membrane
compositions showing different stress-strain relations at increased strain rates. Although the
material does exhibit some viscoelastic properties—as indicated by the presence of the permanent
set—these effects are controlled for and minimized by establishing a wait time. Furthermore, as
the material shows no dependence on strain rate, nonlinear hyperelastic constitutive models can
be used to capture and define the material.

5.2 Fitting Hyperelastic Models

Utilizing the models and derivations outlined in section 3.2, each hyperelastic model can be fit to
uniaxial data. In Table 5.1 below, the material parameters for each model are outlined for three
different membrane sample compositions (20%, 50%, and 100% thinner). Note that all fit
parameters for p have units of MPa. Raw data for each composition was selected from multiple
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membrane samples showing repeatability over many tests, to ensure that these samples were
indeed indicative of the specific composition sample properties. Each model was fit on
MATLAB over both the entire stretch range and over an optimal stretch range based on the
model itself. The Arruda-Boyce, Yeoh, and Ogden models were fit over a select stretch range,
starting from 30% strain since the mechanical oscillator tests were conducted above this
pre-stretch value. The Neo-Hooke, Mooney-Rivlin, and Gent models were fit up until a select
stretch value. In order to obtain realistic curve fits, specific model parameters were constrained
based on values found in literature. Figure 5.11 (a-f) illustrates these curve fits with the raw data.

Table 5.1. Hyperelastic Model Parameters for Silicone Polymer Samples

Hyperelastic Strain 20% Thinner 50% Thinner 100% Thinner
Model Range Membrane Membrane Membrane
Neo-Hooke I<i<4 1,=0.809 1,=0.309 p,=0.127
I<Ai<2 w,=0.575 1,=0.240 p,=0.103
Arruda-Boyc | 1<A<4 p=0.389, f=2.435 n=0.212, B=3.182 pn=0.0959, p=3.559
€
1<A<25 p=0.543, 3=4.285 n=0.218, p=3.322 p=0.0941, p=3.379
Mooney-Rivl | 1<A<4 1,=0.00136, p,=-1.64 p,=0.444, 1,=-0.401 ,=0.172, n,=-0.132
in
1<A<25 | p=0.619, w,=-0.0708 1,=0.292, n,=-0.0854 1,=0.124, p,=-0.0333
Yeoh (N=3) 1<A<4 | C,=4.07e° Cy=-1.92¢, | C,=1.20¢° C,=-3.96¢7, C,y=4.69¢* C,;=4.86¢%,
C,,=1049 C,=110 C,=154
1<A<2.5 | C,=3.27€ Cy)=-9.48¢°, C,y=1.13€° C,;=2.77¢%, C,,=4.78¢* C,=2.71¢%,
C,,=740 C,=101 C,,=31.6
Ogden (N=3) | 1<A<4 1,=0.674, a,=1.813 1,=0.228, a,=2.064 1,=0.156, a,=0.404
1,=0.0001, a,=8.444 1,=0.00029, a,=6.468 1,=0.0388, a,=2.839
1,=-0.001, a,=0.000 w,=-0.001, a,=-0.180 w,=-0.001, a,=-0.298
1<A<25 1,=0.622, a,=1.753 1,=0.286, a,=1.320 1,=0.235, a,=1.813
1,=0.0036, a,=5.606 1,=0.0284, a,=3.562 1,=0.0001, a,=8.444
1,=-0.0321, a,=-2.882 1,=-0.001, a,=-0.458 1,=-0.001, a,=0
Gent 1<i<4 p=0.465,J =22.1 p=0.226, J =33.0 p=0.100, J =41.0
1<A<25 p=0.563,J =77.6 p=0.230, J =36.7 1=0.0993, J,=39.1

24




Stress, o (Pa)

Stress-Strain Curve and Curve Fits for Full Stretch Range

(e)

«10° 100% Thinner Ci
T T T T T
—— Raw Data
- Neo-Hooke Fit
Arruda-Boyce Fit
Mooney-Riviine Fit
Yeoh Fit (N=3)
Ogden Fit (N=3) 2
[ Gent Fit
s
’ 4
I L I I 1
1 1.5 2 25 3 3.5
Lambda, A\
(@
Stress-Strain Curve and Curve Fits for Full Stretch Range
x10° 50% Thinner Compositionn
16 F T T T T T
Raw Data
Neo-Hooke Fit
Arruda-Boyce Fit
14 - Mooney-Rivline Fit
Yeoh Fit (N=3)
Ogden Fit (N=3)
. Gent Fit
10 -
T
[
S
g 8r
8
7}
6 "
%
all %
ol
0 . . . . L
1 1.5 2 25 3 3.5
Lambda, A
(©
Stress-Strain Curve and Curve Fits for Full Stretch Range
x10° 20% Thinner Composition
T T T T T
5 Raw Data
Neo-Hooke Fit
Arruda-Boyce Fit
45 Mooney-Rivline Fit
Yeoh Fit (N=3)
Ogden Fit (N=3)
4+ Gent Fit 1
35 B
3r 7 4
25 g 4
2r 4
ez
1.5 /4 4
=
1+ = 1
051 1
0 I I . . .
1 1.5 2 2.5 3 3.5 4
Lambda, A

25

Stress-Strain Curve and Curve Fits for Select Stretch Range

%10° 100% Thinner C
T T T
Raw Data
r Neo-Hooke Fit: ~ 1<A<2 b
Arruda-Boyce Fit: 1.3<A<2.5
Mooney-Rivline Fit: 1<A<2.5
Yeoh Fit (: 1.3<A<2.5
L Ogden Fit (N=3):  1.3<\<2.5 ]
Gent Fit: 1<)<2.5
I I I I I I
1.5 2 25 3 3.5 4

Lambda, A

()

Stress-Strain Curve and Curve Fits for Select Stretch Range

x10° 50% Thinner C
o T T T T T T
Raw Data
Neo-Hooke Fit:  1<A<2
Arruda-Boyce Fit:
14+ Mooney-Riviine
Yeoh Fit (N=3):  1.3<\<2.5
——— Ogden Fit (N=3):  1.3<\<2.5
—— Gent Fit: 1<A<25
12
10 -
T
=
S
g 8
i
» p
6 4
a4l 4
ol 4
0 . . . . . L
1 s 2 215 3 3.5 4
Lambda, A
Stress-Strain Curve and Curve Fits for Select Stretch Range
x10° 20% Thinner Composition
T T T T T
5 Raw Data H
Neo-Hooke Fit:  1<A<2 )
Arruda-Boyce Fit: 1.3<A<2.5
45F Mooney-Rivline Fit: 1<\<2.5 /1
Yeoh Fit N=3):  1.3<\<2.5
Ogden Fit (N=3):  1.3<\<2.5
41| — GentFit: 1<A<2.5 Y 1
35 B
g o |
©
825 1
7}
2F = 1
151 = R
1| i
0.5 1
-
0 . . . L .
1 1.5 2 25 3 3.5 4

Lambda, \

1



Figure 5.11. Hyperelastic model fits for membrane raw data over the full stretch range for (a) 100%
thinner composition, (c) 50% thinner composition, (e) 20% thinner composition, and for select stretch
ranges for (b) 100% thinner composition, (d) 50% thinner composition, (f) 20% thinner composition

A few noticeable features can be seen from these fits. Firstly, the Neo-Hooke and Mooney-Rivlin
models are unable to capture the strain stiffening phenomena observed in the material. Thus, they
are completely unable to model the material over the full range of data. However, both of these
simple models fit the data accurately at lower stretch values, roughly until stretch reaches two.
For the 50% and 100% thinner composition samples, the Arruda-Boyce, Yeoh, Ogden, and Gent
model fit very well with the experimental data. For the 20% thinner composition sample, the
models struggled to fit the data with the same precision as for the softer membranes, but the
Yeoh and Ogden models still provided adequate fits. This can be attributed to drastic increase in
elastic modulus at high stretch for the 20% thinner composition sample, for which the models
struggled to accommodate the sharp increase in stress. For lower stretch ranges (up to 2.5), all
models fit the data very well, with the exception of the Neo-Hooke model, which was only valid
to a stretch of around two.

Based on the parameters obtained from the curve fits, Table 5.2 compares the elastic modulus
values obtained from the model parameters. These values are obtained from shear modulus for
each fit, and are trivially converted to elastic modulus from equation 2. Note that the values are
primarily estimates assuming small strain.

Table 5.2. Elastic Modulus Determined from Hyperelastic Model Fits

Hyperelastic Shear Modulus | Stretch Range 20% Thinner 50% Thinner 100% Thinner
Model Membrane Membrane Membrane
Neo-Hooke 1<A<4 2.43 MPa 0.928 MPa 0.382 MPa
MW=Ly
1<A<2 1.72 MPa 0.721 MPa 0.310 MPa
Arruda-Boyce 1<A<4 1.31 MPa 0.677 MPa 0.302 MPa
W=Ho
(eqn 17) 1<A<2.5 1.68 MPa 0.694 MPa 0.298 MPa
Mooney-Rivlin 1<i<4 -0.834 MPa 0.130 MPa 0.119 MPa
[ T 1
1<A<25 1.65 MPa 0.620 MPa 0.271 MPa
Yeoh (N=3) 1<A<4 2.44 MPa 0.717 MPa 0.282 MPa
n=2C,,
1<A<25 1.96 MPa 0.676 MPa 0.287 MPa
Ogden (N=3) 1<A<4 2.02 MPa 0.681 MPa 0.501 MPa
Lo U 1Py T
1<A<25 1.78 MPa 0.940 MPa 0.818 MPa
Gent 1<A<4 1.40 MPa 0.677 MPa 0.300 MPa
u=p
1<A<25 1.69 MPa 0.691 MPa 0.298 MPa
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The values obtained from these fits are indicative of the accuracy of the fit itself. As observed
earlier, the Neo-Hooke and Mooney-Rivlin fits are poor for large stretch ranges, and the elastic
modulus is altered significantly when the model is fit over an appropriate range. Surprising was
the difference in elastic modulus for the Ogden model between the overall and enhanced range
fits. This is due to the fact that determining shear modulus from the Ogden model relies on three
parameters, so small changes in each value propagate into large errors in the estimate for elastic
modulus. The remaining three models were consistent for the 50% and 100% thinner
composition samples despite the difference in stretch range used to fit the model, with
discrepancies up to only 6%. These similar values validate the accuracy of the fit and efficacy of
the model over both select stretch ranges and large ranges. Every model showed significant
difference for the 20% thinner composition sample, since ignoring the drastic increase in stress at
high stretches enabled fits to adjust precisely at lower stretches.

In general, the models yield similar results in estimating shear and elastic modulus. Only the
Ogden model shows remarkably different elastic modulus estimates from the other models. Table
5.3 compares each obtained value from the enhanced range fit to the elastic modulus average
from the Arruda-Boyce model. The Arruda-Boyce model is chosen for its high accuracy in
fitting data over select strain ranges (Figure 5.11) and good stability due to its physical
background. By contrast, the Ogden model fits the data very well but is only stable when the
product of the model parameters is positive (in one case a,=0, and subsequently elastic modulus
estimate is not accurate).

Table 5.3. Error in Elastic Modulus between Arruda-Boyce and Individual Hyperelastic Models

Hyperelastic Model | 20% Thinner Membrane | S0% Thinner Membrane | 100% Thinner Membrane
Arruda-Boyce 1.68 MPa 0.694 MPa 0.298 MPa
(Estimate)
Neo-Hooke 2.38% 3.89% 4.03%
Mooney-Rivlin 1.79% 10.66% 9.06%
Yeoh (N=3) 16.67% 2.59% 3.69%
Ogden (N=3) 5.95% 35.45% 174.50%
Gent 0.60% 0.43% 0.00%

Although the Ogden model fits the data very well, the constants and parameters obtained from
these fits do not translate to shear or elastic modulus. The Neo-Hooke and Mooney-Rivlin forms
are both accurate for the stiffer membrane, but perform poorly relative to the other models for
the 50% and 100% thinner composition membrane. The Yeoh model is ineffective for the 20%
thinner composition membrane, but the best predictor for elastic modulus of softer membranes.
Overall, the Arruda-Boyce and Gent models are consistent and accurate regardless of the
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membrane composition. The Gent model was chosen to estimate elastic modulus as it is the most
accurate model across each membrane composition.

5.3 Silicone Polymer Membrane Composition and Elasticity

As the silicone polymer membranes can be designed and optimized to obtain a desired stiffness,
a wide range of thinner (0-120%) can be added to the mixture before curing. Thus, a general
sense for elasticity of the desired membrane composition should be known. Thickness can be
altered as well to ultimately fine-tune stiffness for hydrokinetic energy harvesting applications.

Figure 5.12 shows the relationship between membrane composition and shear modulus. Each
data point is the average of three samples, each tested three times and fit with the Gent model to
obtain a value for shear modulus. The tested samples were fit with the Gent model over an initial
range up to stretch values of 1.5, given the application of the material as hydrokinetic foils. The
error bars represent the maximum and minimum value obtained from any one fit.
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Figure 5.12. Shear modulus from the Gent model fit for varying membrane compositions. Data is fit with
both Quadratic (red curve) and 3™ Order (blue curve) functions for the full data set (left plot) and
excluding the extreme composition data points (right plot)

As the relationship between composition and shear modulus is clearly nonlinear, the points were
initially fit with a quadratic function (red curve). However, the quadratic function predicts an
increase in shear modulus at high compositions, which is intuitively nonsensical: an increase in
thinner will always make the membrane softer, decreasing its shear modulus. Thus, the data were
fit with a 3™ order function (blue curve) to ensure that the curve would always predict a decrease
in shear modulus with increasing thinner composition.

Due to difficulties synthesizing membranes at low and high thinner compositions, caution needs
to be taken when viewing the 5% thinner and 120% thinner compositions. The 5% thinner
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composition is highly viscous and therefore difficult to degas. In turn, small air bubbles can form
or remain in the sample during curing, leading to imperfections and slight inaccuracies.
Conversely, the 120% thinner composition is an extremely soft and sticky membrane which also
may be imprecise as samples deform even when removed from glass. While it is worthwhile to
see that the obtained values lie where they are expected to, the precise values may not be
accurate. As a result, the plot on the right shows the curves being fit for the middle five data
points, excluding the extreme thinner compositions. The 3™ order function obtained from these
data offers the best estimation of shear modulus for given thinner compositions from 0-100%.

5.4 Mechanical Oscillator - Horizontal Configuration

The potential of a mechanical oscillator to quantify the material modulus of elasticity and
viscous damping coefficient was investigated through a series of experiments. The ‘softest’
membrane composition (100% thinner) was used in an attempt to bring out the viscous damping
effect. For consistency of trials, all samples had an 80 mm width and 500 micron thickness.
Figure 5.13 below shows sample data from video tracking. A smooth spline was fit to the data
with 2% maximum amplitude tolerance for a smooth but accurate fit.
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Figure 5.13. MATLAB Tracking Position for 1.3 pre-stretch, 30mm amplitude, 25.79¢g total mass, and
75mm initial length

A few notable phenomena can be seen from the MATLAB tracking results. As expected, there is
a high periodicity of motion that is constant throughout the trial. The amplitude begins at a
maximum and decreases over time. Initially, this decrease is rapid but at smaller amplitudes the
decrease becomes minimal. This can be explained by some level of viscous damping, which will
be discussed later. Furthermore, the effect of gravity is negligible: oscillations are not ‘pulled’ or
skewed downwards due to the gravitational force, and instead the mass oscillates about the zero
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displacement. This is due to the fact that the contributions from inertial force and elastic force
dominate compared to the gravitational force since the mass is relatively small (equation 33).
Finally, a secondary frequency can be observed from the sinusoidal behavior of the amplitude.
This is the reflection of a torsional mode from imperfect testing. As the string-mass release is not
always exactly perfect due to the nature of the experiment, a torsional mode can result. However,
as experiments were repeated numerous times, it is evident that these secondary frequencies do
not play a role in the primary frequency of oscillation and thus do not affect the estimation for
elastic modulus.

Ultimately, tests for each selected pre-stretch value was performed at least three times, and each
test lasted over seven seconds. Given the period length ranging from 0.15-0.23 seconds, each test
contained over 30 oscillations. For each test, predicted results were fit to the governing equation
of motion at least three times over a minimum of 5-10 periods. Figure 5.14 (a-1) shows examples
of fit data over at least 10 oscillations for various pre-stretch conditions. For the most accurate
and consistent results, the gravitational force was ignored. In Figure 5.14, the spline fit shows the
experimentally obtained data and the predicted motion is derived from the ODE set up from
Equation 33, with values for E and 1 adjusted to fit the experimental results.
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values obtained from these and similar fits

Despite the impact of secondary frequencies on the amplitude of oscillation, the clear trend
downward is evidence of linear damping. Linear damping decreases amplitude by a factor of ™,

where b = ET]n? with viscous damping coefficient, 11, and mass, m. Thus, with linear damping,

decreases in amplitude are large initially and become gradual over time. Disregarding secondary
frequencies, this trend is evident in our data. Thus, an estimation for viscous damping coefficient
was determined by fitting curves over the general trend of the data, ignoring changes in
amplitude caused by torsional modes. Figure 5.15 (a-e) shows estimates made based on
experimentally obtained data. The estimates for viscous damping are obtained by fitting the
curves to the form y = Ae*%’cos(%"t), where amplitudes are estimated by y = Ae 3. Due to

the impact of secondary frequencies on amplitude, the values obtained for viscous damping
coefficient have high uncertainty. As obtained values split the variations from secondary
frequencies, uncertainty was determined by obtaining values that fell entirely within or outside of
the oscillations over time.
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Figure 5.16. Comparison between experimental results and damped sine curve, as determined from the
viscous damping coefficient and period of oscillation

After obtaining the oscillation period and a value for damping, the curves can be fit via another
method: a damped sine function. These show very high alignment with the predicted motion as
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well. As mentioned above, this function takes the form y = Ae‘ﬁ'ﬁcos(%ﬂt) , which is shown in
Figure 5.15.

The following Table 5.4 shows the full results obtained from fitting the tracked oscillations
(depicted in Figures 5.14). Estimates for modulus of elasticity, viscous damping coefficient,
period, and strain rate are shown. The error for each condition is taken as a combination of the
single minimum or maximum point from any one fit over more than 10 periods and uncertainties
from measurements for mass and length. In general, the first few oscillations had marginally
longer periods than the rest of the experiment, so these initial periods were largely ignored
during post-processing. However, the period reached an equilibrium for later cycles in all valid
experiments, and remained consistent for many oscillations. Thus, the data reflects these later
cycles of motion, typically more than one second after release. Note that values for elastic
modulus are scaled to reflect changes in cross-sectional area from stretching. After taking this
into consideration, the values align very well.

Table 5.4. Elastic Modulus and Damping Coefficient based on Horizontal Oscillator Data

Stretch | Period Strail_l1 Elastic Elastic Modulus Damping Coefficient Dampipg
Range (s) Rate (s') | Modulus (MPa) [ Error (Min-Max) (10~ Ns/m) Uncertainty
1.10-1.19 | 0.226 1.68 0.224 0.215-0.234 15.20 +3.5
1.20-1.26 | 0.205 1.26 0.213 0.209 - 0.224 16.63 +2.5
1.30-1.36 | 0.189 1.27 0.190 0.180 - 0.198 7.62 +3.5
1.40-1.46 | 0.180 1.25 0.176 0.169 - 0.183 9.64 +2.0
1.50-1.59 | 0.170 2.16 0.170 0.162 - 0.174 16.55 +3.0
1.60-1.62 | 0.166 0.53 0.159 0.152 - 0.166 8.63 +3.0
1.70-1.72 | 0.161 0.52 0.152 0.145 - 0.159 11.71 +2.5
1.80-1.82 | 0.156 0.50 0.152 0.142 - 0.156 9.49 +1.5
1.90-1.92 | 0.149 0.50 0.153 0.145 - 0.159 12.14 +2.5

The results are as expected: a high initial elastic modulus followed by a decrease to a relatively
constant elastic modulus. The period, regardless of amplitude of oscillation, was extremely
consistent across each trial and showed no discernable variability. The strain rate was dependent
on the range of stretch covered during each oscillation and the period. The strain rates are
comparable or greater than those observed during uniaxial studies, which only covered ranges up
to 0.67 s™".

Figure 5.17 compares the results obtained from the mechanical oscillator with estimations for
elastic modulus from uniaxial tests. The uniaxial values are plotted over the full range of stretch.
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The elastic modulus obtained from the mechanical oscillator results is also plotted with the
diamond marker, and each point is labeled by the starting stretch. The results show that the
horizontal oscillator can be used to predict the material elastic modulus for stretches from 1.1 to
1.9. Practical complications prevent from testing outside of this range for the horizontal
mechanical oscillator, as the thin lead mass used in the experiment bends at high stretch. Given
that the material must always be in tension, the minimum stretch tested is 1.1. All points are
close to the uniaxial results, and within the uncertainty of the experiment.
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Figure 5.17. Comparison of Elastic Modulus Predicted from Oscillator (diamond markers) and Uniaxial
Testing (blue line). Due to physical limitations with the mechanical oscillator method, the range of stretch
for comparison is up to A=2

Despite a conservative approach to error—which combines the range of values obtained from all
tests and uncertainties associated with measurements—the error remains well within reason. The
horizontal error bars represent the stretch range each test covered. Overall, these data show high
repeatability and prove the consistency of the method. While results are repeatable, caution still
needs to be taken when selecting data to report. Namely, poorly executed trials should be redone
until proper. Poorly executed trials show very large variability in amplitudes between subsequent
periods and can be distinguished both visually during testing and from tracking results. In these
cases, secondary frequencies from torsional modes are so large that they will begin to impact the
primary frequency of oscillations periodically, and are thus not able to be accurately modeled.
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It should also be noted that, although not explicitly shown, there is also some uncertainty in the
estimate for elastic modulus as determined by uniaxial testing. As the estimate relies on taking
the derivative of a spline fit to noisy raw tensile data, the exact values depend largely on how
well the spline fits the data without being affected by noise. The fit above was chosen to
represent the 100% thinner composition since it aligned with multiple other uniaxial samples;
still, although minor, the bumps in the curve are not actually representative of the material
behavior. Increasing the tolerance of the spline fit would smooth these bumps, but sacrifice
accuracy at low stretch ranges, which is not worthwhile in this case.

An advantage of the mechanical oscillator, besides being a low-tech method to estimate elastic
modulus, is that it explicitly outputs a value for elastic modulus. By contrast, curves must be fit
to uniaxial data and derived to estimate elastic modulus, in which spline fitting of noisy raw data
can lead to error in estimating elastic modulus. Furthermore, the method enables use to quantify
a viscous damping coefficient. The results (Table 5.4) for the damping coefficient are variable,
but give a ballpark estimate between 8¢~ and 16e Ns/m. The horizontal oscillator configuration
enables torsional modes to cause secondary frequencies that impact period amplitude, making it
difficult to obtain a viscous damping coefficient with higher confidence. Especially since
oscillation data were taken from steady state—disregarding the first few oscillations—changes in
amplitude are often small, so obtaining a value with high confidence is more difficult.

Despite estimating a coefficient for viscous damping, the values obtained do not necessarily
represent material damping. Instead, damping could arise from air resistance, especially as the
sheet of polymer used in the configuration is relatively wide and the change in the elastomer
length caused by vibrations is small. For this horizontal configuration, the damping term is 3rd
order for displacement during small oscillations, so the term becomes negligible when vibrations
are small. This provides reason to believe that air resistance could play a factor in the observed
damping from experimental results, as damping may be caused by a force not considered in our
equation of motion. Regardless, a study of the oscillator conducted in a vacuum would provide a
lot of insight into the contributions from both material properties and air resistance to damping.

Finally, some alternative methods for data interpretation can be explored in future directions.
Experimental data can instead be compared with a linearized version of the equation of motion
(Equation 33), and a relationship between stress in the material and natural frequency can be
obtained. Much like the experiment above, repeated testing at different pre-stretch values can be
conducted to obtain a range of values. Linearizing the equation of motion substantially reduces
the complexity of the solution to the differential equation, however, this estimation would only
hold true for small oscillations. These are especially hard to test at low pre-stretch values where
larger oscillations are needed to properly excite the system.
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5.5 Mechanical Oscillator - Vertical Configuration

The vertical oscillator configuration was tested to further study the damping coefficient, 1. Due
to the mass moving strictly in line with the membrane, high strain rates were obtained: above 4
s”'. However, the data could not be accurately fit or predicted computationally due to the variable
behavior of elastic modulus over large changes in stretch. Furthermore, the configuration is less
robust than the horizontal configuration. Uncertainty associated with measurements for mass
creates large variability in trying to estimate a value for tangent modulus. This is not surprising,
as motion has a strong dependence on the gravitational force. As a result of both of these issues,
the vertical configuration could not be used to obtain any useful estimates to characterize the
material.

6.0 Conclusions

As populations across the globe look to address their carbon emissions, an emphasis is placed on
renewable energy alternatives. Hydrokinetic energy extraction from hydrodynamic foils is a
promising method for energy harvesting, especially in coastal regions. Within this field,
compliant membrane foils have emerged as an area of interest, although the technology is still in
a nascent stage. As a result, identifying an ideal material for these foils is critical in realizing the
potential of these foils. This study looked to characterize the silicone polymer material being
utilized for these foils.

Overall, uniaxial testing results showed no significant viscoelastic behavior. At strain rates
present in energy harvesting applications, the material strength and loading will not change due
to viscoelastic behavior. This is crucial, as viscoelastic behavior absorbs energy that would
otherwise have increased power (and therefore foil efficiency). Additionally, the material did not
show long-term changes in stress-strain relationship when being repeatedly tested over weeks.
This is also critical given the material application—it should be able to maintain material integrity
across month-long time spans.

To actually characterize the material, a few methods were employed. Uniaxial testing data were
used to compare a variety of hyperelastic material models, and ultimately identify the Gent
Model as the most effective model for our material. Estimates for shear modulus and elastic
modulus were obtained from fitting uniaxial data with this model and used to identify the
relationship between membrane thinner composition and desired elastic modulus. This
relationship can be used to estimate stiffness of these silicone materials at any thinner
composition between 5% and 100%. The initial addition of thinning liquid decreases the shear
modulus greatly, so extra precaution needs to be taken if looking to obtain a shear modulus in
this region. Thinner composition should never exceed 100%, as tear strength and material
integrity become seriously compromised.
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While hyperelastic models output a value indicative of material strength, actual strength of these
nonlinear materials depends on the strain. Furthermore, as foils for energy harvesting, a
pre-stretch can be applied to maintain tension in the foil and create a desired stiffness. Local
material elastic modulus can be obtained by deriving for the slope of uniaxial data, however, the
potential of a mechanical oscillator is also examined to estimate values for local elastic modulus.
The results showed high agreement with uniaxial test data, and the mechanical oscillator also
shows high repeatability. The oscillator very accurately calculates relative changes in elastic
modulus at various stretch values ranging from 1.1 to 1.9. Additionally, the method provides an
estimate for viscous damping coefficient, which gives a sense of the damping behavior of the
material. The damping coefficient is a theoretical parameter that explains energy dissipation: at a
maximum of 16e? Ns/m for the 100% thinner composition membrane. All other compositions
will have a lower damping coefficient than this membrane, but precise values can be obtained by
testing samples with this method. Further analysis, however, should be conducted to determine
whether this phenomenon is actually the result of material properties or if it is instead influenced
by air resistance.

In determining elastic modulus at a given stretch for nonlinear materials, measuring the slope of
tensile data or using the mechanical oscillator is much more accurate than relying on a
hyperelastic material model. The models tend to overestimate the local material strength, at least
at small stretch ranges. The mechanical oscillator method is remarkable for its simplicity, very
low cost, and accessibility. Furthermore, post-processing outputs desired values (E and n)
directly. This method has implications for independent researchers and academics without access
to uniaxial testing machines, which are usually only accessible to institutions and large
corporations. The initial results are promising and the method should be investigated for more
materials. Ultimately, the horizontal oscillator testing method developed in this study can be used
to determine the elastic modulus at a desired strain and a viscous damping coefficient for
hyperelastic or viscoelastic materials.
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