
  

Characterization   of   Silicone   Polymers   for   Energy   Harvesting   from   
Compliant   Membrane   Foils   

  
Albin   Wells   

  
Submitted   on:   4   April   2021   

  
Submitted   in   partial   fulfillment   of   the   requirements   of   the   degree   of   Bachelor   of   Science   with   

Honors   in   Mechanical   Engineering   
  

School   of   Engineering,   Brown   University   
  

Prepared   under   the   direction   of     
Prof.   Kenneth   Breuer,   Advisor   

Prof.   Allan   Bower,   Reader     
  

By   signing   below,   I   attest   that   the   undergraduate   thesis   listed   above   meets   the   criteria   for   Honors,   
and   has   been   successfully   presented   to   the   faculty   at   the   Undergraduate   Research   Symposium.   
  

___________________________________   
Advisor’s   Signature   

  
___________________________________   

Reader’s   Signature   
  

___________________________________   
Honors   Chair’s   Signature   

  
  
  
  
  
  
  

  

A.F. Bower



1.0   Abstract 3   

2.0   Introduction 3   

3.0   Background 4   
3.1   Silicone   Polymer   Material 4   
3.2   Material   Modelling 6   

3.2.1   Overview:   General   Methods 7   
3.2.2   Mechanistic   Models 7   
3.2.3   Phenomenological   Models 9   
3.2.4   Hybrid   Models 10   
3.2.5   Hyperelastic   Model   Comparison 11   

3.3   Mechanical   Oscillator 11   
3.3.1   Horizontal   Configuration 12   
3.3.2   Vertical   Configuration 14   
3.3.3   Mechanical   Oscillator   Testing   Approach 16   

4.0   Materials   and   Methods 16   
4.1   Silicone   Polymer   Synthesization 16   
4.2   Compliant   Membrane   Foil   Construction 17   
4.3   Uniaxial   Testing 18   
4.4   Mechanical   Oscillator   Testing   Instrument 19   

5.0   Results   and   Discussion 19   
5.1   Uniaxial   Studies 19   
5.2   Fitting   Hyperelastic   Models 23   
5.3   Silicone   Polymer   Membrane   Composition   and   Elasticity 28   
5.4   Mechanical   Oscillator   -   Horizontal   Configuration 29   
5.5   Mechanical   Oscillator   -   Vertical   Configuration 36   

6.0   Conclusions 37   

7.0   Acknowledgements 38   

8.0   References 38   
   

2   



1.0   Abstract  
Within  the  field  of  hydrokinetic  energy  harvesting,  passive  membranes  have  shown  promise  as               
devices  suitable  for  energy  capture.  As  much  about  the  behavior  of  shape-morphing  foils  is  still                 
largely  unknown,  this  project  develops  from  previous  work  analyzing  how  compliant  membranes              
can  be  employed  to  maximize  the  efficacy  of  tidal  flow  energy  harvesting.  This  work                
investigates  the  silicone  elastomers  used  for  these  compliant  foils,  combining  a  series  of  uniaxial                
tests,  ring-down  experiments,  and  computational  modelling  to  comprehensively  characterize  the            
material.  These  findings  will  be  used  to  predict  and  understand  how  the  material  behaves  as  a                  
hydrodynamic  foil  in  energy  harvesting  applications.  Furthermore,  the  approach  provides  a             
simple  and  cost-effective  method  for  characterizing  similar  hyperelastic  materials.  The  work             
shows  the  potential  of  a  mechanical  oscillator  to  estimate  the  elastic  modulus  at  a  given  strain                  
and  the  damping  coefficient  for  hyperelastic  materials  with  some  viscoelastic  properties.  This              
method  can  quickly  be  employed  to  estimate  both  of  these  values  utilizing  readily  available                
tools,   and   effectively   characterize   nonlinear,   hyperelastic   materials.     

2.0   Introduction   
As  the  carbon  concentrations  in  our  atmosphere  continue  to  increase,  the  negative  effects               
associated  with  anthropogenic  climate  change  will  only  become  more  profound.  Increased  global              
temperatures  pose  a  threat  to  all  sources  of  life:  as  unpredictable  weather  patterns  disrupt                
ecosystems  across  the  globe,  rising  sea  levels  flood  coastal  regions,  and  warming  oceans               
endanger  aquatic  life.  With  over  75%  of  all  greenhouse  gas  emissions  resulting  from  fossil  fuel                 
consumption,  there  is  a  dire  need  to  meet  the  global  energy  demand  with  renewable  energy                 
sources. [1]     
  

Within  the  sphere  of  sustainable  energy  harvesting,  the  capacity  of  hydropower  as  a  source  of                 
energy  is  immense.  The  potential  of  rigid  foils  in  hydrokinetic  energy  extraction  has  become                
widely  accepted  as  a  promising  area  in  energy  harvesting  from  low-velocity,  high-volume  flows.               
Oscillating  hydrodynamic  foils  represent  a  minimally  invasive,  more  robust,  and  versatile  source              
of  renewable  energy  compared  to  standard  rotary  turbines.  Not  only  do  they  reduce  the  impact  on                  
marine  environments,  they  can  also  be  deployed  in  shallower  water,  and  can  harvest  tidal  current                 
energy  from  the  entire  span  of  a  channel.  While  these  rigid  foils  struggle  to  match  the  efficiency                   
of  standard  rotary  turbines,  passive  shape-morphing  ‘compliant’  foils  offer  a  way  to  bridge  this                
gap.  The  ability  for  the  hydrodynamic  foil  material  to  camber  and  interact  with  the  flow                 
generates  stable  leading  edge  vertices  (LEVs),  which  increases  the  lift  forces  driving  the  foil.                
Initial   research   shows   that   silicone-based   polymer   membrane   foils   can   increase   the   efficiency   up   
to   260%   compared   to   rigid   foils. [2]   
  

While  preceding  work  has  focussed  on  the  fluid-foil  interactions–analyzing  LEV  formation  and              
shedding–the  material  properties  of  the  silicone  polymer  membranes  used  for  the  foils  has  not                
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been  fully  defined.  Thus,  the  relationship  between  material  behavior  and  experimental  conditions              
cannot  be  fully  understood.  The  idea  of  this  work  is  to  adequately  characterize  the  material  and                  
to  gain  a  comprehensive  understanding  of  its  properties  through  a  series  of  static  uniaxial                
experiments  and  dynamic  oscillation  ring-down  method.  These  realizations  could  help  establish  a              
connection  between  optimal  energy  harvesting  conditions  and  hydrofoil  material  properties,  and            
explain  phenomena  seen  in  future  experiments  and  ultimately  during  the  implementation  of  such               
foils  in  tidal  waters.  Furthermore,  the  viscoelastic  behavior  of  silicone  polymers  could  lead  to                
energy  losses  that  limit  the  foil  efficiency:  the  relevance  and  magnitude  of  these  losses  need  to  be                   
properly   identified   as   well.   
  

In  general,  this  work  has  implications  beyond  its  intrinsic  scope.  The  procedures  carried  out                
represent  straightforward  and  cost  efficient  methods  that  serve  as  a  template  for  the  study  of                 
similar  hyperelastic  material  studies.  This  is  especially  relevant  when  access  to  expensive              
machinery  is  limited,  as  the  procedures  utilize  accessible  and  common  materials.  Similar              
rubber-like,  hyperelastic  materials  that  can  be  studied  using  this  method  are  materials  with               
long-term  flexibility  under  a  variety  of  loads,  and  have  applications  as  car  tires  or  door  seals,                  
among   other   uses.   

3.0   Background   

3.1   Silicone   Polymer   Material   
Silicone  rubbers  are  used  in  a  wide  variety  of  products  and  technologies,  ranging  from                
household,  domestic  objects  to  advanced,  high-performance  technologies. [3]  The  favorable           
material  properties  of  silicone  elastomers  such  as  a  resistance  to  tearing,  thermal  and  electrical                
resistance,  robustness,  and  overall  material  strength  and  longevity  lend  themselves  to  large              
ranges  of  applications.  In  our  case,  this  material  is  used  as  a  compliant  membrane  in                 
hydrodynamic   foils   for   energy   harvesting. [4]   
  

The  specific  characteristics  of  silicone  polymers  can  easily  be  altered  and  manipulated  for  the                
desired  use.  In  order  to  obtain  the  solid  silicone  polymer  material  desired,  uncured  liquid  silicone                
must  be  cross-linked  to  form  a  covalent  polymer  network.  Liquid  silicone  undergoes              
platinum-based  addition  curing  reaction  called  hydrosilylation,  in  which  a  polymer  base  is  mixed               
with  a  diluted  crosslinker.  Each  premixed  part,  ambiguously  labeled  ‘Part  A’  or  ‘Part  B’,  is  stable                 
and  unreactive.  The  dilution  of  the  cross-linked  part  is  essential  in  preventing  immediate,  local                
curing   and   inconsistencies   in   the   overall   material   shape   and   strength.  
  

Contrary  to  standard  polymers  with  a  carbon  spine,  silicone  rubbers  consist  of  alternating               
silicone  and  oxygen  units  in  their  backbone.  This  unique  backbone  structure  accounts  for  many                
of  its  advantageous  properties  including  high  flexibility,  softness,  and  thermal  stability.  This              
backbone   is   bonded   to   methyl   groups   (CH 3 ).   The   entire   structure   is   shown   in   Figure   3.1   below.   
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Figure   3.1.   Silicone   polymer   molecular   structure  

  
Figure   3.2.   Ideally   linked   silicone   network   structure   

  
The  ideal  silicone  polymeric  network  is  represented  by  a  grid  structure  with  cross-linkers               
connecting  polymer  chains  (Figure  3.2).  The  effects  of  this  grid  structure  can  be  envisioned  by                 
viewing  these  polymer  chains  as  springs.  Denser  cross-linking  will  increase  the  number  of  spring                
units  per  area,  which  in  turn  increases  the  material  strength.  In  general,  the  stiffness  of  this                 
system  of  springs  is  the  Young’s  modulus,  E,  which  is  proportional  to  the  material  density.  This                  
serves   as   the   basis   of   Hooke’s   law:   

εσ = E (1)   
Assuming   incompressibility,   the   Young’s   modulus   is   related   to   shear   modulus,   μ:   

μ(1 ) μE = 2 + v = 3 (2)   
Note  that  the  incompressibility  assumption,  which  indicates  no  change  in  volume  under              
deformation,  is  standard  for  rubber-like  materials  and  is  represented  by  a  Poisson’s  ratio,  ,  of               v   
0.5.  For  silicone  elastomers,  Hooke’s  law  only  holds  true  in  the  linear  region,  up  to  10%  strain.                   
Beyond  this  small  initial  region,  the  onset  of  strain-softening  and  strain-hardening  phenomena              
create  a  non-linear  stress-strain  relationship.  Ultimately,  these  materials  can  reach  strains  well              
beyond  300-400%  (in  some  cases  exceeding  1000%)  and  stresses  around  1  MPa  (reaching  up  to                 
13   MPa). [5]   
  

For  non-ideal  elastomers,  the  relationship  between  stress  and  strain  is  more  complicated  due  to  a                 
dependence  on  strain  rate.  Moreover,  many  commercially  available  silicone  polymers  include  the              
presence  of  various  fillers,  which  enhance  the  material  tear  strength  and  tensile  properties  but                
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further  contribute  to  some  complex,  non-linear  phenomena.  This  includes  the  Mullins  effect,              
which  indicates  changing  stress-strain  curves  under  steady-state,  cyclic  loading  at  increasing  or              
decreasing  maximum  strains. [4]  This  effect  shows  that,  when  the  material  is  stretched  beyond  a                
previous  maximum  stretch,  it  becomes  softer.  Subsequently,  the  permanent  set  of  filled              
elastomers  shows  elastomer  elongation  following  static  stretching  for  an  extended  period  of  time.               
This  results  from  a  reorganization  and  curing  within  the  material,  so  that  it  reaches  a  new                  
zero-stress  molecular  state.  However,  this  effect  is  not  necessarily  permanent  and  the  material               
can  return  to  its  original  zero-stress  state  over  time.  Finally,  the  Payne  effect  is  also  noticeable  in                   
filled  silicone  elastomers.  The  effect  shows  a  shift  in  shear  modulus  as  strain  increases.  The                 
phenomena  indicates  an  initial  material  storage  modulus  at  low  strains  (<1%),  followed  by  a                
rapid  decrease  in  modulus  due  to  breaking  macromolecules  into  subnetworks,  and  ultimately  a               
constant  storage  modulus  exceeding  around  10-20%  strain. [6]  In  turn,  the  governing  equation  (2)               
above   can   be   rewritten   to   include   influences   from   these   effects   under   small   strains:   

(ε, ) (ε) (ε, ) (ε, )  σ dt
dε = f · g dt

dε · h εmax (3)   

where   is  the  simple  linear  relationship  from  (2),   indicates  a  dependence  on  the   (x)f         (ε, )g dt
dε       

strain   rate   from   the   Payne   effect,   and     captures   softening   due   to   the   Mullins   effect.  (ε, )h εmax  
  

As  the  Mullins  effect,  Payne  effect,  and  permanent  set  can  cause  substantial  changes  in  data                 
repeatability  and  consistency,  caution  must  be  taken  during  experimentation  to  identify  if  these               
effects  are  present  and  how  they  might  affect  results.  In  general,  some  precautions  can  be  taken                  
to  minimize  these  nonlinear  phenomena.  Ample  rest  time  should  be  given  to  reduce  the  impact                 
of  the  permanent  set,  and  elastomers  should  be  stretched  significantly  (beyond  what  will  be                
experienced  during  testing)  to  ensure  they  have  already  experienced  the  maximum  strain.  Finally,               
some  elastomers  with  a  strong  Payne  effect  will  soften  at  a  specific  strain  rate–this  should  also  be                   
addressed   and   looked   out   for. [7]   

3.2   Material   Modelling   
The  modeling  of  various  phenomena  observed  in  materials  is  the  basis  of  understanding  and                
predicting  material  behavior.  Furthermore,  accurate  material  modelling  and  prediction  can  aid  in              
the  design  and  development  of  new  materials  for  specific  applications.  Although  the  concept  of                
material  modeling  is  centuries  old,  it  remains  a  dynamic  field,  with  new  models  constantly  being                 
proposed   and   optimized.   
  

Although  silicone  rubbers  possess  both  viscous  and  elastic  behaviors,  the  effects  are  dominated               
by  the  elastic  contributions.  Thus,  viscous  effects  can  be  negated  entirely  if  strain  rates  are  not                  
too  high.  Under  this  assumption,  hyperelastic  models  can  be  used  to  define  and  fit  data.                 
Additionally,  filled  elastomers  tend  to  behave  as  hyperelastic  materials  and  are  commonly              
modeled  as  such. [8]  Choosing  a  model  is  not  always  trivial,  as  each  has  advantages  and                 
drawbacks  for  different  types  of  hyperelastic  materials.  In  general,  however,  these  models  all  aim                

6   



to  capture  the  non-linear  stress-strain  relationship  observed  for  hyperelastic  materials  in  a  given               
strain  range.  These  models  can  be  split  into  categories  as  mechanistic  models  that  derive               
equations  from  underlying  material  mechanics,  phenomenological  models  that  describe  observed            
properties,  and  hybrid  models  containing  mechanistic  and  phenomenological  aspects.  Note  that,             
for   soft,   rubber-like   materials,   we   will   assume   incompressibility. [9]   

3.2.1   Overview:   General   Methods   

A  few  overarching  methods  form  the  basis  of  all  hyperelastic  models.  Although  these               
relationships  are  well  known  and  outlined  in  textbooks  covering  hyperelasticity,  they  are              
nonetheless  important  to  restate  here  for  completeness  and  understanding.  Overall,  the  upcoming              
sections  follow  the  frameworks  outlined  in   Applied  Mechanics  of  Solids [10] ,   Mechanics  of  Solid               
Polymers [17] ,   and   a   publication   on   the   assessment   of   hyperelastic   material   models [9] .   
  

In  general,  hyperelastic  materials  can  be  explained  by  the  relationship  between  strain  energy,  W,                
and   strain   invariants,   I 1 ,   I 2 ,   and   I 3 .   All   of   these   models   start   from   the   relation   

(I , I , I )W = f 1   2   3 (3)   
which  ensures  perfectly  elastic  material  behavior.  These  invariants  are  equivalent  to  various              
combinations   of   the   principal   extensions,    λ 1 ,   λ 2 ,   and   λ 3 :   

I1 = λ
2
1 + λ

2
2 + λ

2
3 (4)   

λ λ λI2 = λ
2
1

2
2 + λ

2
2

2
3 + λ

2
3

2
1 (5)   

λ λI3 = λ
2
1

2
2

2
3 (6)   

λ = ε + 1 (7)   
Furthermore,  assuming  incompressibility  and  uniaxial  extension,  we  can  further  obtain  the             
following   relationships   8   and   9,   respectively:     

λ λλ1 2 3 = 1 (8)   
 = , λλ1 λ   2 = λ3 =

1
√λ

 (9)   

Equations  8  and  9  hold  true  during  uniaxial  testing,  and  are  used  to  derive  the  uniaxial                  
stress-strain  relations  for  each  model.  The  general  form  for  particular  models  are  guided  by                
experiments,  but  all  include  variables  that  can  be  used  to  define  a  particular  material.  For  each                  
model,  materials  are  assumed  to  be  isotropic;  this  means  that  material  behavior  is  independent  of                 
orientation  with  respect  to  loading.  Ultimately,  particular  stress-strain  relationships  for  every             
model   are   obtained   by   differentiating   the   strain   energy   density. [10]   

3.2.2   Mechanistic   Models   

One  of  the  simplest  hyperelastic  constitutive  models  available  is  the  neo-Hookean  model. [11]  This               
model  is  similar  to  Hooke’s  law  yet  predicts  nonlinear  behavior  of  certain  materials  at  larger                 
strain  rates.  The  neo-Hookean  model  is  accurate  for  various  cross-linked  polymer  materials.              
Initially,  at  low  strains,  polymer  chains  can  move  relatively  freely  but  eventually  the  chain  will                 
be  stretched  to  a  maximum  point  and  the  cross-links  will  prevent  further  stretching.  Thus,  the                 
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model  shows  a  gradual  increase  in  the  elastic  modulus  of  a  material.  This  model  can  be  used  for                    
rubber-like  materials  during  the  initial  linear  range  (usually  below  20%  strain),  but  is  generally                
known  to  be  inaccurate  in  predicting  phenomena  at  higher  strains. [12][13]  The  strain  energy  density,                
W,   for   a   neo-Hookean   solid   is:   

(I ) (J )  W = 2
μ1

1 ­ 3 + 2
K1 ­ 1 2 (10)   

where  μ 1  and  K 1  are  material  constants  and  Ī 1  is  the  deviatoric  first  invariant  of  the  left                   
Cauchy-Green  deformation  tensor  (note  that  ).  The  stress-strain  relationship  is  as       II1 = J­2 3/

1       
follows:   

(J B I I) (J )I  σ = μ1
J5 3/

­2 3/ ­ 3
1

1 + K1 ­ 1 (11)   
where  B  is  the  left  Cauchy-Green  deformation  tensor,  I  is  the  identity  matrix,  and  J  is  the                   
Jacobian  of  the  deformation  gradient.  For  incompressibility,  J  must  be  1  to  preserve  volume.  For                 
isotropic,  incompressible  materials,  the  uniaxial  stress-stretch  relation  can  be  derived  by  finding              
the   Cauchy   stress   differences   (assuming   incompressibility)   and   assuming   no   traction:   

  and    σ11 ­ σ33 = λ1 dλ1
dW 1 ­ λ3 dλ3

dW 3 σ22 ­ σ33 = λ2 dλ2
dW 2 ­ λ3 dλ3

dW 3  (12)   

 λdλi

dW i = μ1 i  

  and    (λ )  σ11 ­ σ33 = μ1
2
1 ­ λ

2
3 (λ )  σ22 ­ σ33 = μ1

2
2 ­ λ

2
3 = 0  

)   since     (no   traction)  σ11 = σ = (λ  μ1
2
­ λ

1 σ22 = σ33 = 0  
(λ )  σEng = λ

σ = μ1 ­ 1
λ2

(13)   
where   is   nominal   stress.  σEng  
  

A  more  complex  mechanistic  model  is  the  Arruda-Boyce  ‘eight-chain’  model. [14][15]  The             
Arruda-Boyce  model  is  motivated  by  the  microstructure  of  rubber-like  polymers.  The  model  is               
based  on  a  volume  element  with  eight  polymer  chains,  with  each  chain  linking  on  a  diagonal                  
from   a   corner.   The   strain   energy   density   is   given   by:   

( (I ) (I ) (I ) ..) (J )W = μ 2
1

1 ­ 3 + 1
20β2 1

2
­ 32 + 11

1050β4 1
3
­ 33 + . + 2

K ­ 1 2 (14)   

where   and  K  are  material  properties.  The  Cauchy  stress  for  the  Arruda-Boyce  model  for   , β,μ                 
an   incompressible   solid   is:   

(1 ..)Bσ = μ + I1
5β2

+ 33I1
2

175β4
+ . (15)   

Furthermore,   the   uniaxial   stress   can   be   derived   as:   

 (λ )(1 ..) (λ )σ11 = σ = μ 2
­ λ

1 + I1
5β2

+ 33I1
2

175β4
+ . = C 2

­ λ
1  

(λ )  σEng = λ
σ = C ­ 1

λ2
(16)   

where  .  Recall  that,  from  our  general  methods  and  assumptions   (1 ..)C = μ + I1
5β2

+ 33I1
2

175β4
+ .          

above,  ,  so  C  is  variable  with  a  dependence  on  stretch.  Under  small  deformation,  the    I1 = λ
2
­ λ

2               
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material  property  can  be  taken  as  the  shear  modulus.  Initial  shear  modulus  can  be  related  to     μ               
shear   modulus   by: [16]   

(1 )μ0 = μ + 3
5β2

+ 99
175β4

+ 513
875β6

+ 42039
67375β8

(17)   

The  Arruda-Boyce  model  is  advantageous  under  high  stretch  conditions.  The  model  only              
requires  three  input  parameters  (including  the  bulk  modulus,  K)  and  has  no  dependence  on  the                 
second   invariant,   I 2 .   It   is   similar   in   accuracy   to   the   Gent   model. [17]   

3.2.3   Phenomenological   Models   
The  Mooney-Rivlin  model  is  a  two  parameter  phenomenological  model  that  essentially  aims  to               
improve  the  accuracy  of  the  Neo-Hookean  model. [9][10][18]  As  a  result,  the  Mooney-Rivlin  model               
is  a  linear  combination  of  two  invariants  of  the  left  Cauchy-Green  deformation  tensor,  as                
opposed   to   only   one   like   the   Neo-Hookean   model.   The   strain   energy   density   is:   

(I ) (I ) (J )  W = 2
μ1

1 ­ 3 + 2
μ2

2 ­ 3 + 2
K1 ­ 1 2 (18)   

where  μ 1 ,  μ 2 ,  and  K 1  are  material  constants  Note  that  the  first  invariant  of  the  left  Cauchy-Green                   
deformation  tensor  and  the  second  invariant  .  For  an  incompressible    II1 = J­2 3/

1     II2 = J­4 3/
2     

Mooney-Rivlin   solid:   
μ )B B (μ I μ I )I  σ = ( 1 + I2 2

μ2 ­ μ2 · B ­ 3
1

1 1 + 2 2 2 (19)   
In   the   case   of   uniaxial   tension,   a   similar   derivation   utilizing   Cauchy   stress   difference   shown   in   
Equation   12   with   simplification   outlined   in   Equation   9   can   be   used   to   show:   

 μ )(λ )  σ11 = σ = ( 1 + λ
μ2 2

­ λ
1
   

μ )(λ )  σEng = λ
σ = ( 1 + λ

μ2 ­ 1
λ2  

(20)   
In   the   case   of   a   Mooney-Rivlin   solid   under   small   strains,   the   shear   modulus,   μ,   can   be   related   to   
the   equation   by:   

μ  = μ1 + μ2 (21)   
This  two-parameter  model  is  particularly  useful  in  obtaining  a  value  for  shear  modulus,  yet  the                 
model   can   become   inaccurate   at   strains   above   100%.   
  

The  Yeoh  model,  also  known  as  the  reduced  polynomial  model,  is  another  model  for  nonlinear                 
materials  that  is  only  dependent  on  the  first  strain  invariant,  I 1  (for  incompressible  materials). [9]  It                 
is   given   by:   

(I ) (J )W = ∑
N

i=1
C i0 1 ­ 3

i
+ ∑

N

k=1

1
Dk

­ 1 2k (22)   

where  C i0  and  D k  are  material  properties.  Solving  for  uniaxial  stress  for  and  assuming              N = 3   
incompressibility:   

  where   Bσ = 2 dI1
dW C (I )dI1

dW = ∑
N

i=1
i i 1 ­ 3

i­1 (23)   
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 (λ ) C (I )σ11 = σ = 2 2
­ λ

1 ∑
N

i=1
i i0 1 ­ 3

i­1  

 (λ )(C C (λ ) )  σ = 2 2
­ λ

1
10 + 2 20

2 + λ
2 + 3C (λ )30

2 + λ
2 2

 

(λ )(C C (λ ) )σEng = λ
σ = 2 ­ 1

λ2 10 + 2 20
2 + λ

2 + 3C (λ )30
2 + λ

2 2
(24)   

In  the  Yeoh  model,  C 10  must  be  a  positive  value  and  can  be  interpreted  as  half  of  the  shear                     
modulus,  .  For  curve-fitting  purposes,  it  is  generally  a  rule-of-thumb  to  take   Cμ = 2 10            

and  .  In  order  to  take  advantage  of  superior  aspects  of  the  ­ .01C  C20 ≈ 0 10  ­ .01C  C30 ≈ 0 20            
Yeoh  model,  a  value  of   is  typical  and  effective  for  most  practical  applications,  and  is       N = 3            
hence  the  solution  shown  above.  It  can  be  noticed  that,  when  the  equation  is  equivalent  to             N = 1      
the   neo-Hookean   model. [17]   
  

Finally,  the  Ogden  model  is  a  phenomenological  hyperelastic  form  that  is  directly  based  on                
principal   stretch   ratios   instead   of   strain   invariants. [10][17][19]    It   follows   the   form:   

(λ ) (J )W = ∑
N

i=1
αi

2
2μi

1
αi + λ2

αi + λ3
αi
­ 3 + 2

K1 ­ 1 2 (25)   

where  μ i ,  a i ,  and  K 1  are  material  properties,  and  .  While  the  general  solution  to           Jλi = λi
­2 3/       

obtain  the  stress  is  lengthy,  it  follows  the  same  formula:  deriving  strain  energy  density  with                 
respect  to  each  principal  stretch.  Important  to  note  with  the  Ogden  model,  is  that  for  and                 N = 1  

,  the  formula  is  identical  to  the  neo-Hookean  form.  Furthermore,  for   and  α = 2            , αN = 2   1 = 2   
,  the  model  reduces  to  the  Mooney-Rivlin  form.  For  an  incompressible  material  under  ­  α2 = 2              

uniaxial   tension,   the   Ogden   stress   takes   the   from:   

 (λ )σ1 = σ = ∑
N

i=1
μi

αi ­ λ­ α2
1

i  

(λ )σEng = λ
σ = ∑

N

i=1
λ
μi αi ­ λ­ α2

1
i (26)   

Under   small   strains,   the   shear   modulus,   μ,   is:   

μ = ∑
N

i=1
μi (27)   

The  Ogden  form  has  shown  strong  correlations  with  uniaxial  testing  data  for  large  strains,  being                 
accurate   up   to   700%   if   an   appropriate   material   is   being   modeled   with   proper   parameters. [19]   

3.2.4   Hybrid   Models   
The  Gent  model  is  based  on  the  concept  of  limiting  polymer  network  stretch. [9][20]  In  this  aspect,                  
it  is  similar  to  the  Arruda-Boyce  model.  The  Gent  model  is  aimed  at  characterizing  materials                 
under   large   deformation.   The   constitutive   equation   is:   

­ ln(1 ) ( n(J))W = 2
μJm ­ Jm

I ­31 + 2
K

2
J ­12
­ l (28)   
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where   and  K  are  shear  modulus,  a  dimensionless  ‘locking’  parameter  used  to  limit  chain   , J ,μ   m               
extensibility   under   large   deformation,   and   bulk   modulus,   respectively.   Stress   can   be   derived   as:   

B (J )I  σ = μJm
J ­I +3m 1

+ K ­ 1 (29)   

For   incompressible,   uniaxial   tension,   the   stress   becomes:   
 λ )( )  σ11 = σ = ( 2

­ λ
1 μJm

J ­I +3m 1
 

λ )( )  σEng = λ
σ = ( ­ 1

λ2
μJm

J ­I +3m 1
(30)   

where  .  Note  that,  if  ,  the  solution  is  identical  to  the  neo-Hookean  form.  In   I1 = λ
2 + λ

2     nf  Jm→ i           
general,  the  Gent  model  is  advantageous  for  its  simple  nature  and  high  accuracy:  specifically  that                 
it  is  a  two-parameter  model  (excluding  bulk  modulus)  with  one  parameter  being  shear  modulus                
itself.   

3.2.5   Hyperelastic   Model   Comparison   
Overall,  most  of  these  models  are  effective  for  certain  applications  and  over  specific  stretch                
ranges.  However,  a  comparison  for  the  predictive  capabilities  of  each  model  is  shown  below  in                 
Table  3.1  to  give  a  better  sense  of  model  robustness  and  efficacy.  The  number  of  material                  
parameters  required  to  fully  define  each  model  given  an  incompressible  material  is  also               
presented  in  Table  3.1.  While  the  constants  obtained  and  material  parameters  vary  for  each                
model  and  often  have  arbitrary  meanings,  specific  parameters  such  as  shear  modulus,  μ,  can  be                 
directly  compared  across  models.  From  equation  2  above,  elastic  modulus  can  be  calculated  for                
those   hyperelastic   models   in   which   shear   modulus   is   a   parameter.   
  

Table   3.1.   Overall   Predictive   Capabilities   of   Select   Hyperelastic   Models [17]   

3.3   Mechanical   Oscillator   
Numerous  methods  and  instruments  have  been  developed  to  measure  the  properties  of  materials.              
While  each  method  ranges  in  complexity,  they  fall  into  a  few  primary  categories:  static  and                 
dynamic  methods.  Static  methods  include  tensile  tests  such  as  uniaxial  stress  or  uniaxial  strain                
tests  and  flexural  testing  methods,  although  this  is  only  ideal  for  brittle  materials.  Dynamic                
methods  include  resonance  and  impact  excitation  methods  that  use  natural  frequencies  to              

11   

Hyperelastic   Model   R 2 -Prediction   Material   Parameters   

Neo-Hookean   0.794   1   

Arruda-Boyce   0.973   2   

Mooney-Rivlin   0.843   2   

Yeoh   (N=3)   0.980   3   

Ogden   (N=3)   0.998   6   

Gent   0.972   2   



calculate  elastic  modulus.  Techniques  include  continuously  vibrating  beams  at  select  frequencies             
to  sweep  for  resonance  or  by  striking  a  beam  and  recording  the  sound  to  determine  frequency.                  
However,  these  methods  themselves  are  also  not  optimal  for  elastic  materials.  Furthermore,  these               
well-developed  methods  tend  to  involve  expensive  machinery  that  is  not  widely  accessible  for               
use.  Even  the  most  common  tensile  testing  instruments,  such  as  Instron  machines,  for  example,                
are   very   expensive   and   typically   only   available   to   larger   institutions.   
  

A  mechanical  oscillator,  however,  is  a  low-cost,  accessible,  and  straightforward  method  to              
determine  the  elastic  modulus  of  elastic  materials.  Mechanical  oscillators  involve  a  cyclic              
conversion  between  potential  energy  stored  in  deformed  elastic  materials  and  kinetic  energy              
from  a  mass  in  motion.  In  this  study,  the  potential  of  a  mechanical  oscillator  for  characterizing                  
rubber-like  silicone  elastomers  is  examined.  The  findings  could  provide  another  alternative  to              
understanding   the   stress-strain   relationship   of   elastic   and   hyperelastic   materials.   
  

Much  like  other  dynamic  methods,  the  frequency  of  cyclic  motion  from  the  mechanical  oscillator                
can  be  used  to  estimate  elastic  modulus.  The  governing  equation  for  these  systems  vary  based  on                  
their  configuration.  In  general,  however,  the  constitutive  equation  will  include  an  inertial  term               
dependent  on  acceleration,  a  restoring  force  dependent  on  material  stiffness,  and  a  damping  term                
dependent  on  strain  rate.  The  magnitude  of  this  damping  reflects  the  material  damping               
coefficient,  and  assumes  inefficiencies  between  the  periodic  conversion  of  kinetic  and  potential              
energy  is  the  result  of  the  material  properties  and  behavior  instead  of  physical  aspects  of  the                  
oscillator  configuration  such  as  friction  or  air  resistance.  The  validity  of  this  assumption  will                
later   be   discussed   retrospectively   as   well.   

3.3.1   Horizontal   Configuration   
For  the  purpose  of  this  study,  a  horizontal  mechanical  oscillator  configuration  was  designed  to                
meet  two  primary  criteria:  a  straightforward  set-up  in  which  data  can  easily  be  recorded  without                 
expensive  machinery  and  the  material  always  acting  in  tension.  A  biaxial  configuration,  for               
example,  would  make  it  difficult  to  effectively  track  mass  position  and  out-of-plane  forces  could                
create  motion  that  would  require  multiple,  synchronized  cameras  to  track.  This  would  complicate               
the  method  in  a  way  that  would  defeat  the  purpose  of  the  mechanical  oscillator  as  a  simple                   
method  to  estimate  material  properties.  The  chosen  horizontal  configuration,  shown  in  Figure  3.3               
and   Figure   3.4   below,   was   used   to   satisfy   both   of   these   conditions.   
  

  
Figure   3.3.   Side   view   of   horizontal   mechanical   oscillator   system   
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Figure   3.4.   Top   view   of   horizontal   mechanical   oscillator   system   

  
Figure   3.5.   Deformed   state   and   motion   of   horizontal   mechanical   oscillator   system   

  
F = m

dt2
d x2 (31)   

(ε) (η, ) (g)F = F + F dt
dε + F (32)   

­ EA sin(θ)( ) ηA ( ) cos(φ) gm
dt2
d x2 = 2 o Lo

(x +L ) ­L2
i
2 1 2/

o
­ 2 o

x
(x +L ) L2

i
2 1 2/

0
dt
dx ­ m (33)   

  and    ( )θ = tan­1 x
Li

( )φ = tan­1 x
Li  

The  basic  law  governing  the  horizontal  mechanical  oscillator  is  Newton’s  Law  (31).  From  the                
figure  and  knowledge  of  the  materials  being  used,  there  are  three  influences  on  the  oscillating                 
mass:  a  force  from  the  polymer  membrane  in  tension  that  is  dependent  on  strain,  a  viscous                  
damping  force  dependent  on  a  material  damping  constant  and  strain  rate,  and  a  constant  force                 
due  to  gravity.  In  these  equations,   is  strain,   is  a  material  property  describing  viscous        ε    η        
damping,  g  is  acceleration  due  to  gravity,  m  is  mass,  E  is  elastic  modulus,  A o  is  membrane                   
cross-sectional  area,  L i  is  initial  unstretched  membrane  length,  and  L o  is  initial  horizontal               
membrane  length  in  the  mechanical  oscillator  with  an  applied  pre-stretch.  Since  the  oscillator               
mass  is  much  larger  than  the  membrane  mass,  the  configuration  can  be  idealized  as  a                 
spring-mass-damper  system  and  the  vibrational  mechanics  and  wave  propagations  through  the             
membranes   are   negligible.   
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For  the  horizontal  oscillator  configuration  chosen  in  this  experiment,  the  governing  equation  is               
shown  in  Equation  33,  and  derived  from  the  schematic.  The  force  exerted  on  the  mass  due  to                   
material  stretching  is  equivalent  to  the  product  of  the  elastic  modulus  for  a  given  strain  and                  
cross-sectional  area.  The  non-vertical  forces  from  the  membranes  offset,  so  only  forces  in  the                
vertical  direction  dictate  the  movement.  Due  to  the  range  of  the  tangent  inverse,                 ­ 2

π < θ < 2
π  

and  ,  so  the  force  will  act  upwards  when   and  downwards  when  .   in(θ)  ­ 1 < s < 1         x < 0     x > 0  
Furthermore,  the  force  due  to  viscous  damping  will  oppose  the  velocity,  with  no  direct                
dependence  on  position.  Thus,  with  the  same  range  of   as  for  ,  and  the           φ    θ  os(φ)  0 < c ≤ 1   
direction  of  this  force  contribution  depends  entirely  on  the  direction  of  velocity.  These  angles  are                 
also   depicted   in   Figure   3.5.   Lastly,   there   is   a   constant   gravitational   force   directed   downwards.   
  

The  following  system  of  differential  equations  is  solved  for  position  and  velocity.  Taking                x1 = x  
and   ,   the   governing   equations   above   become:  x2 = x′  

 x′ = x2  

 ­ EA sin(tan ( ))( ) ηA x cos(tan ( ))( ) g) mx 2′ = ( 2 o
­1 x1

Lo Lo
(x +L ) ­L1

2
i
2 1 2/

o
­ 2 o 2

­1
x1
Lo x1

(x +L ) L1
2

i
2 1 2/

0

­ m /  

Mass,  amplitude,  initial  length,  and  pre-stretched  length  are  all  prescribed  constants.  Elastic              
modulus  and  the  viscous  damping  coefficient  are  estimated  and  ultimately  determined  through              
curve-fitting  on  MATLAB.  Note  that,  given  the  small  strain  ranges  present  in  the  set-up,  we                 
assume  linear  elasticity  so  elastic  modulus  is  constant.  Multiple  tests  are  required  with  varying                
pre-stretch  to  investigate  and  estimate  the  elastic  modulus  at  another  strain  range.  The  initial                
conditions   and   are  applied  to  an  ordinary  differential  equation  solver   (0) ­ mp  x = a   (0)x′ = 0          
(ode45)  in  MATLAB  and  predicted  position  and  velocity  as  a  function  of  time  can  be  plotted.                 
These  solutions  can  ultimately  be  compared  to  experimental  data  using  MATLAB  video  tracking               
for  position  (x 1 ),  which  can  subsequently  be  used  to  determine  velocity,  x 2 .  Unknown  constants,                
such  as  ,  can  be  estimated  by  comparing  the  curves  and  seeing  which  values  fit  the    η               
experimental   results   to   computational   predictions.   

3.3.2   Vertical   Configuration   
In  addition  to  the  horizontal  configuration  outlined  above,  a  vertical  oscillator  configuration  is               
also  tested.  A  vertical  configuration  is  chosen  in  order  to  test  material  properties  at  higher  strain                  
rates.  While  the  small  angles  from  oscillation  in  the  horizontal  configuration  limit  strain  rates,                
the  vertical  oscillator  is  used  to  achieve  high  strain  rates  as  all  movement  of  the  mass  is  in  line                     
with  the  membrane.  The  strain  rates  achieved  through  this  configuration  can  far  exceed  the  strain                 
rates  from  uniaxial  testing  instruments,  and  will  be  used  to  estimate  the  effect  of  viscous                 
damping   effect   at   higher   strain   rates.   The   set-up   is   outlined   in   Figure   3.6   below.   
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Figure   3.6.   Schematic   of   vertical   mechanical   oscillator   system   

  
Figure   3.7.   Deforemed   state   and   motion   of   vertical   mechanical   oscillator   

  
In  order  to  remain  in  tension  throughout  movement,  the  mass  is  oscillated  such  that  it  will  always                   
remain  well  below  its  initial,  unstretch  length,  L o .  The  governing  equation  for  this  system  is                 
derived   in   a   similar   manner   to   the   horizontal   system,   and   the   solution   is   shown   in   equation   34.   

A ( ) gm
dt2
d x2 = E o Lo

L ­x­Li o
­ η dt

dx 1
L0
­ m (34)   

15   



As  the  membrane  undergoes  large  changes  in  stretch  under  this  configuration,  the  initial  resting                
stretch  (L i )  and  amplitude  of  oscillation  is  chosen  based  on  uniaxial  results  for  an  approximately                 
linear  region  of  stress-strain.  This  assumption  is  approximately  true  at  stretches  ranging  between             

.  Thus,  elastic  modulus,  E,  can  be  estimated  as  a  constant–the  validity  of  this  .5 .51 < λ < 2               
assumption  will  be  determined  by  the  ability  to  predict  and  replicate  motion  computationally.               
The  mass  is  tracked  by  a  slow-motion  iPhone  camera  and  the  system  is  solved  on  MATLAB  as                   
outlined   in   the   previous   section.   

3.3.3   Mechanical   Oscillator   Testing   Approach   
Ultimately,  experimental  data  can  be  used  to  estimate  the  force  exerted  on  the  mass  by  the                  
sample  over  a  range  of  strain  values.  For  the  horizontal  configuration,  a  number  of  repeated  tests                  
need  to  be  taken  with  varying  initial  strain  lengths  to  estimate  the  elastic  modulus  at  any  given                   
strain.  Although  these  strain  values  are  less  extensive  than  the  full  range  obtained  by  a  uniaxial                  
test,  a  stress-strain  relationship  can  be  established  for  this  area.  Increasing  and  decreasing               
masses,  pre-stretch,  and  initial  excitation  amplitude  will  change  the  range  of  strains  being  tested,                
and  a  stress-strain  curve  can  be  built  over  a  greater  range  of  strains.  Results  obtained  via  this                   
method  can  be  fit  with  the  hyperelastic  models  mentioned  in  the  previous  section  and  compared                 
to  the  results  from  uniaxial  testing  to  determine  the  validity  and  potential  of  this  method  as  a                   
low-cost  and  accessible  alternative  to  sophisticated  uniaxial  testing  instruments  for  determining             
the  material  properties  of  hyperelastic  materials.  The  decay  in  oscillation  amplitudes  can  be  used                
to   estimate   a   damping   coefficient   for   the   material   as   well.   
  

Furthermore,  the  vertical  configuration  will  also  be  used  to  test  samples  at  very  high  strain  rates:                  
notably  higher  than  the  uniaxial  testing  instrument.  This  test  can  be  used  to  examine  the  viscous                  
damping  effect  of  the  material  at  high  strain  rates,  and  determine  if  these  effects  are  noticeable  at                   
the  obtained  strain  rates.  Ideally,  the  viscous  damping  coefficient  can  be  calculated  from  this                
method–confirming  the  results  obtained  from  the  horizontal  configuration  at  even  higher  strain              
rates.   

4.0   Materials   and   Methods   

4.1   Silicone   Polymer   Synthesization   
Silicone  polymer  membranes  were  synthesized  using  MoldStar  Series:  Platinum  Silicone  Rubber             
Part  A,  Mold  Star  Series  16  Fast:  Platinum  Silicone  Rubber  Part  B,  Mold  Star  Series  15  Slow:                   
Platinum  Silicone  Rubber  Part  B,  and  BJB  Enterprises  TC-5005  Part  C.  These  will  be  referenced                 
as   Part   A,   Part   B   fast,   Part   B   slow,   and   Part   C,   respectively.     
  

Proper  amounts  of  each  part  are  measured  to  contain  equal  mass  of  Part  A  as  Part  B  fast  and                     
slow,  and  Part  C  is  variable  as  a  percentage  of  the  total  amount  (Part  A,  Part  B  fast,  and  Part  B                       
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slow).  In  general,  relatively  large  amounts  of  all  parts  were  used  to  minimize  error  and  minor                  
deviations  in  net  weight  between  parts.  Equal  parts  A  and  B  (fast  +  slow)  were  taken  to  ensure  an                     
ideal  ratio  of  polymer  to  cross-linkers  in  the  mixture,  and  Part  C  was  added  based  on  the  desired                    
material  stiffness  and  application.  All  three  parts  were  mixed  thoroughly,  degassed  at  around               
-0.85atm  for  five  minutes  to  remove  air  bubbles.  It  is  important  to  note  that,  adding  no  Part  C  to                     
the  mixture  makes  degassing  very  difficult  and  can  lead  to  air  bubbles  in  cured  membranes,                 
while   adding   too   much   Part   C   (over   100%)   can   lead   to   very   soft   membranes   that   tear   easily.   
  

A  leveling  device  was  calibrated  and  set  to  a  height  at  least  300μm  above  the  ultimate  desired                   
membrane  thickness,  usually  around  750μm.  Liquid  silicone  was  then  poured  onto  a  flat,  clean                
glass  pane  and  the  leveling  device  was  steadily  pulled  across  the  glass  and  set  aside.  Liquid                  
silicone  was  then  left  to  cure  at  room  temperature  overnight.  Desired  membrane  samples  were                
laser-cut   and   carefully   removed   from   the   glass.   

4.2   Compliant   Membrane   Foil   Construction   
Constructing  compliant  membrane  foils  was  a  careful  process  with  each  step  requiring  focus  to                
maintain  a  clean,  uniform  hydrodynamic  foil.  A  rectangle  with  dimensions  150mm  x  425mm               
was  laser-cut  but  not  removed  from  the  glass.  Instead  the  surrounding  excess  membrane  material                
was  removed.  Four  wood  planks  roughly  1”  wide  and  longer  than  the  rectangle  were  obtained,                 
and  each  marked  with  a  line  down  the  center.  A  thin,  uniform  layer  of  silicone  adhesive  glue                   
(Sil-Poxy  Silicone  Rubber  Adhesive,  or  Gorilla  100%  Silicone  Clear  Sealant)  was  added  to  one                
side  of  one  of  the  planks.  A  paper  towel  was  aligned  along  the  edge  of  the  membrane  rectangle,                    
and  the  wood  plank  was  glued  onto  the  membrane  so  that  half  of  the  plank  was  on  the  membrane                     
and  the  other  half  on  the  paper  towel.  Excess  paper  was  cut  off.  The  process  was  repeated  for  the                     
other  side,  weights  were  placed  on  top  of  the  planks,  and  the  glue  was  let  to  dry  for  two  hours.                      
The   exact   width   of   the   membrane   between   the   planks   was   measured   and   recorded.   
  

Wood  planks  were  then  removed  from  the  glass  with  the  membrane,  using  a  thin,  metal  spatula                  
to  help  lift  the  membrane  from  the  glass  when  necessary.  Glue  was  carefully  added  to  any  areas                   
where  the  membrane  was  not  completely  attached  to  the  plank.  Once  the  membrane  was                
separated  from  the  glass,  it  was  flipped  over  and  the  other  two  wood  planks  were  glued  to  the                    
membrane  and  planks  on  the  other  side,  sandwiching  the  membrane  between  each  pair  of  planks.                 
The  wood  planks  were  glued  to  a  stretching  rig,  and  fixed  in  parallel  at  a  desired  pre-stretch,                   
usually   10   or   15%.   
  

Two  thin  steel  frames  were  obtained  to  serve  as  the  frame  of  the  foil.  Gorilla  Epoxy  Clear  glue                    
was  mixed  and  applied  in  a  thin  layer  around  one  side  of  each  frame,  and  let  harden  for  15                     
minutes.  All-purpose  Krazy  Glue  was  added  onto  the  hardened  epoxy  on  one  frame,  and                
carefully  placed  glue-side  down  in  the  center  of  the  stretched  membrane.  The  frame  was  lightly                 
and  repeatedly  pressed  down  on  all  sides,  and  a  thin  layer  of  Krazy  Glue  was  applied  around  the                    
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outside  of  the  frame.  The  glue  was  let  to  dry  for  10  minutes,  the  stretching  rig  was  flipped  over,                     
and  the  process  was  repeated  on  the  other  side  with  the  second  steel  frame.  The  finished  foil  was                    
the  cut  from  the  stretching  rig  and  excess  membrane  material  was  removed  with  the  laser  cutter.                  
An   example   of   a   finished   foil   is   shown   below   in   Figure   4.1   below.   

  
Figure   4.1.   Compliant   membrane   hydrodynamic   foil     

4.3   Uniaxial   Testing   
Dogbone-shaped  samples  were  used  for  uniaxial  testing  (Figure  4.2).  Sample  thickness  was              
measured  and  recorded  using  calipers,  and  a  rapid  manual  pre-stretching  was  applied  roughly  5                
times  to  each  sample  to  minimize  the  Mullins  effect.  Samples  let  rest  for  a  few  hours,  and  were                    
then  carefully  placed  between  two  plates  on  either  side  using  thick  double-sided  tape  to  hold  the                  
sample  in  place.  Samples  were  fastened  into  an  Instron  uniaxial  testing  machine,  and               
force-displacement  measurements  were  taken  over  a  wide  range  of  strains  and  strain  rates.  Data                
were   converted   into   stress   and   strain   separately   based   on   sample   dimensions.  

  
Figure   4.2.   Uniaxial   testing   ‘dogbone’   sample   
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4.4   Mechanical   Oscillator   Testing   Instrument   
A  single  long  rectangular  sample  was  used  with  the  setup  outlined  in  Figure  3.3  and  Figure  3.4.                   
Masses  were  cut  from  a  1  mm  thick  sheet  of  lead  of  desired  width  and  length  equal  to  the                     
rectangle  sample  width.  Thin,  lead  masses  were  fastened  using  tape  to  the  center  of  the                 
rectangular  sample  on  either  side  for  even  weight  distribution  and  to  minimize  torque  effects.                
The  precise  length  of  each  side  was  measured  with  a  caliper.  A  cotton  string,  at  least  20cm  long,                    
was  securely  taped  to  the  center  of  the  bottom  mass:  this  is  an  integral  aspect  of  ultimately  being                    
able   to   excite   the   system   in   a   consistent   and   controlled   manner.   
  

Samples  were  then  aligned  and  secured  on  either  side  to  the  testing  rig,  using  binder  clips  to                   
securely  hold  end  plates.  The  desired  sample  length  (including  pre-stretch)  was  applied  with  the                
adjustable  end  of  the  rig.  The  zero  displacement  of  the  sample  was  measured  and  recorded.  An                  
iPhone  camera  was  held  in  place  level  with  the  sample  and  set  to  record  with  the  slow-motion                   
setting.  Samples  were  tested  by  pulling  the  cotton  string  directly  downwards  to  the  desired                
amplitude,  swiftly  cutting  the  string  with  sharp  scissors  to  minimize  unwanted  forces,  and               
recording  the  mass  oscillating  up  and  down  (Figures  3.5  and  3.7).  Video  recordings  were                
post-processed   on   MATLAB,   with   the   position   of   the   mass   being   tracked   throughout   the   test.   

5.0   Results   and   Discussion   

5.1   Uniaxial   Studies   
In  order  to  use  hyperelastic  models  to  characterize  the  material,  the  material  behavior  must  be                 
independent  of  the  rate  of  testing.  A  series  of  tests  was  conducted  in  order  to  determine  these                   
effects.  First,  samples  were  stretched  statically  (at  very  low  strain  rates)  until  failure  to  determine                 
their  failure  points  and  establish  an  operating  range  for  future  tests.  Thus,  future  experiments  that                 
required  samples  to  be  tested  multiple  times  stayed  well  below  these  failure  strains,  so  no  plastic                  
deformation  occurred  in  the  samples.  These  results  are  plotted  in  Figure  5.1.  Recall  that,  from  the                  
procedure,  all  samples  undergo  a  manual  pre-stretching  before  uniaxial  testing.  This  is  to               
eliminate  the  Mullins  effect  present  in  some  rubbers  experiencing  strains  for  the  first  time.  The                 
phenomena  is  shown  in  Figure  5.2,  in  which  the  sample  did  not  undergo  manual  stretching                
before   testing.   
  

19   



  
Figure   5.1.   Membrane   testing   until   failure Figure   5.2.   Mullins   effect   in   virgin   sample   

  
Even  though  all  silicone  membranes  can  stretch  well  beyond  4  times  ( )  their  initial  length,             λ = 5     
future  testing  was  conducted  over  the  range   to  avoid  any  permanent  deformation  or         1 < λ < 4        
changes   in   material   molecular   structure   for   even   the   stiffest   silicone   membranes.     
  

The  permanent  set  phenomena  described  in  Section  3.1  also  needed  to  be  addressed.  After                
returning  samples  to  original  length  after  each  test  ( ),  samples  did  not  go  back  to  their          λ = 1         
initial  taught  state,  and,  instead,  a  noticeable  elongation  between  0-2mm  was  typical.  Although               
this  permanent  set  was  no  more  than  5%  elongation,  it  was  still  necessary  to  take  into                  
consideration.  Thus,  a  wait  time  between  repeated  testing  of  the  same  sample  needed  to  be                 
established  to  ensure  accurate  data  and  consistent  results.  Samples  were  tested  under  various  wait                
times  (Figure  5.3)  and  data  were  fit  on  MATLAB  with  a  smooth,  continuous,  differentiable                
spline  using  the  built-in  MATLAB  spline  fitting  ‘spaps’  function  and  applying  appropriate              
tolerance  to  ignore  raw  data  noise  (Figure  5.4).  While  the  raw  data  were  very  consistent                 
regardless  of  wait  time,  infinitesimal  elastic  modulus  was  plotted  over  stretch  by  differentiating               
the  spline  fits  (Figure  5.5).  In  general,  small  changes  in  the  stress-strain  relationship  can  lead  to                  
large  changes  in  elastic  modulus  since  minor  deviations  propagate  when  taking  derivatives.  As               
can  be  seen  in  Figure  5.6,  which  shows  the  values  of  elastic  modulus  at  the  material  initial  and                    
final  stretch,  elastic  modulus  does  actually  increase  slightly  with  longer  wait  times.  Note  that  the                 
same  analysis  was  conducted  with  silicone  polymers  containing  only  50%  thinner  fraction,              
which  yielded  similar  results  with  a  less  significant  permanent  set.  A  conservative  approach  was                
taken  by  establishing  a  40  minute  wait  time  for  testing  all  samples  to  guarantee  material  recovery                  
for   the   softest   membranes   and   minimize   the   permanent   set   phenomena.     
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Figure   5.3.   Uniaxial   data   with   increased   wait   time Figure   5.4.   Smooth   spline   fit   for   raw   data   

  
Figure   5.5.   Infinitesimal   elastic   modulus Figure   5.6.   Elastic   modulus   at   low   and   high   stretch   

  
In  addition  to  short-term  sample  recovery,  the  material  was  also  tested  over  extended  time                
periods  to  determine  whether  loading  had  any  long-term  effects.  This  is  especially  important  in                
the  context  of  energy  harvesting  from  hydrodynamic  foils,  which  would  need  to  function  over                
longer  periods  of  time.  Samples  were  tested  over  a  time  span  of  three  weeks  and  the  results  are                    
shown  in  Figure  5.7  below.  To  estimate  the  elastic  modulus  over  short  stretch  ranges               
( )  the  curves  were  fit  with  the  Gent  model  and  shear  modulus  was  converted  to  .1 .5  1 ≤ λ ≤ 1                
elastic  modulus  using  Equation  2  (Figure  5.8).  Given  the  application  of  the  material  for  energy                 
harvesting,  the  chosen  stretch  range  is  appropriate  as  compliant  membrane  foil  deformation  will               
not  exceed  a  semi-circular  shape.  Thus,  in  practice,  the  material  will  remain  below                λmax = λi 2

π  
where     is   compliant   foil   pre-stretch   (typically   1.05   or   1.1).  λi  
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Figure   5.7.   50%   thinner   sample   repeat   testing Figure   5.8.   Young’s   Modulus   from   Gent     

8   times   across   3   weeks model   fits   for   each   test   
  

The  results  show  that,  even  over  longer  periods  of  time,  the  material  does  not  decrease  in                  
strength.  In  fact,  each  cycle  was  highly  consistent  and  within  3%  error.  Most  importantly,                
however,  the  cycles  did  not  trend  over  time,  and  instead  fluctuated  naturally  within  a  safe  range.                  
Although  only  data  from  one  sample  is  shown  above,  a  few  different  samples  were  tested  which                  
further   confirmed   these   findings.   
  

After  establishing  a  wait  time  for  repeat  testing,  samples  were  tested  under  a  range  of  strain  rates.                   
Beginning  with  static  analysis  of  20mm/min,  samples  were  tested  repeatedly  to  1600mm/min.              
This  corresponds  to  a  strain  rate  up  to  0.67  s -1 .  This  maximum  strain  rate  approaches  the  limit  for                    
the  uniaxial  testing  machine.  At  least  two  samples  with  20%  thinner,  50%  thinner,  and  100%                 
thinner  were  tested  at  strain  rates  of  20,  50,  100,  400,  800,  and  1600  mm/min.  Figures  5.9  and                    
5.10  below  show  the  results  for  the  highest  and  lowest  strain  rates  for  the  stiffest  (20%  thinner)                   
and   softest   (100%   thinner)   membrane   samples.   
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Figure   5.9.   Uniaxial   test   results   for   20%   thinner   silicone   polymer   at   low   and   high   strain   rate   

  
Figure   5.10.   Uniaxial   test   results   for   100%   thinner   silicone   polymer   at   low   and   high   strain   rate   

  
The  results  are  consistent  over  the  full  range  of  strain  rates,  with  none  of  the  membrane                  
compositions  showing  different  stress-strain  relations  at  increased  strain  rates.  Although  the             
material  does  exhibit  some  viscoelastic  properties–as  indicated  by  the  presence  of  the  permanent               
set–these  effects  are  controlled  for  and  minimized  by  establishing  a  wait  time.  Furthermore,  as                
the  material  shows  no  dependence  on  strain  rate,  nonlinear  hyperelastic  constitutive  models  can               
be   used   to   capture   and   define   the   material.   

5.2   Fitting   Hyperelastic   Models   
Utilizing  the  models  and  derivations  outlined  in  section  3.2,  each  hyperelastic  model  can  be  fit  to                  
uniaxial  data.  In  Table  5.1  below,  the  material  parameters  for  each  model  are  outlined  for  three                  
different  membrane  sample  compositions  (20%,  50%,  and  100%  thinner).  Note  that  all  fit               
parameters  for  μ  have  units  of  MPa.  Raw  data  for  each  composition  was  selected  from  multiple                  
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membrane  samples  showing  repeatability  over  many  tests,  to  ensure  that  these  samples  were               
indeed  indicative  of  the  specific  composition  sample  properties.  Each  model  was  fit  on               
MATLAB  over  both  the  entire  stretch  range  and  over  an  optimal  stretch  range  based  on  the                  
model  itself.  The  Arruda-Boyce,  Yeoh,  and  Ogden  models  were  fit  over  a  select  stretch  range,                 
starting  from  30%  strain  since  the  mechanical  oscillator  tests  were  conducted  above  this               
pre-stretch  value.  The  Neo-Hooke,  Mooney-Rivlin,  and  Gent  models  were  fit  up  until  a  select                
stretch  value.  In  order  to  obtain  realistic  curve  fits,  specific  model  parameters  were  constrained                
based   on   values   found   in   literature.   Figure   5.11   (a-f)   illustrates   these   curve   fits   with   the   raw   data.   
  

Table   5.1.   Hyperelastic   Model   Parameters   for   Silicone   Polymer   Samples   
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Hyperelastic   
Model   

Strain   
Range   

20%   Thinner   
Membrane   

50%   Thinner   
Membrane   

100%   Thinner   
Membrane   

Neo-Hooke   1   ≤   λ   ≤   4   μ 1 =0.809   μ 1 =0.309   μ 1 =0.127   

1   ≤   λ   ≤   2   μ 1 =0.575   μ 1 =0.240   μ 1 =0.103   

Arruda-Boyc 
e   

1   ≤   λ   ≤   4   μ=0.389,   β=2.435   μ=0.212,   β=3.182   μ=0.0959,   β=3.559   

1   ≤   λ   ≤   2.5   μ=0.543,   β=4.285   μ=0.218,   β=3.322   μ=0.0941,   β=3.379   

Mooney-Rivl 
in   

1   ≤   λ   ≤   4   μ 1 =0.00136,   μ 2 =-1.64   μ 1 =0.444,   μ 2 =-0.401   μ 1 =0.172,   μ 2 =-0.132   

1   ≤   λ   ≤   2.5   μ 1 =0.619,   μ 2 =-0.0708   μ 1 =0.292,   μ 2 =-0.0854   μ 1 =0.124,   μ 2 =-0.0333   

Yeoh   (N=3)   1   ≤   λ   ≤   4   C 10 =4.07e 5    C 20 =-1.92e 4 ,   
C 30 =1049   

C 10 =1.20e 5    C 20 =-3.96e 2 ,   
C 30 =110   

C 10 =4.69e 4     C 20 =4.86e 2 ,   
C 30 =15.4   

1   ≤   λ   ≤   2.5   C 10 =3.27e 5    C 20 =-9.48e 3 ,   
C 30 =740   

C 10 =1.13e 5    C 20 =2.77e 2 ,   
C 30 =101   

C 10 =4.78e 4     C 20 =2.71e 2 ,   
C 30 =31.6   

Ogden   (N=3)   1   ≤   λ   ≤   4   μ 1 =0.674,   ɑ 1 =1.813   
μ 2 =0.0001,   ɑ 2 =8.444   
μ 3 =-0.001,   ɑ 3 =0.000   

μ 1 =0.228,   ɑ 1 =2.064   
μ 2 =0.00029,   ɑ 2 =6.468   
μ 3 =-0.001,   ɑ 3 =-0.180   

μ 1 =0.156,   ɑ 1 =0.404   
μ 2 =0.0388,   ɑ 2 =2.839   
μ 3 =-0.001,   ɑ 3 =-0.298   

1   ≤   λ   ≤   2.5   μ 1 =0.622,   ɑ 1 =1.753   
μ 2 =0.0036,   ɑ 2 =5.606   

μ 3 =-0.0321,   ɑ 3 =-2.882   

μ 1 =0.286,   ɑ 1 =1.320   
μ 2 =0.0284,   ɑ 2 =3.562   
μ 3 =-0.001,   ɑ 3 =-0.458   

μ 1 =0.235,   ɑ 1 =1.813   
μ 2 =0.0001,   ɑ 2 =8.444   

μ 3 =-0.001,   ɑ 3 =0   

Gent   1   ≤   λ   ≤   4   μ=0.465,   J m =22.1   μ=0.226,   J m =33.0   μ=0.100,   J m =41.0   

1   ≤   λ   ≤   2.5   μ=0.563,   J m =77.6   μ=0.230,   J m =36.7   μ=0.0993,   J m =39.1   



  
(a) (b)   

  
(c) (d)   

  
(e) (f)   
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Figure   5.11.   Hyperelastic   model   fits   for   membrane   raw   data   over   the   full   stretch   range   for   (a)   100%   
thinner   composition,   (c)   50%   thinner   composition,   (e)   20%   thinner   composition,   and   for   select   stretch   
ranges   for   (b)   100%   thinner   composition,   (d)   50%   thinner   composition,   (f)   20%   thinner   composition   

  
A  few  noticeable  features  can  be  seen  from  these  fits.  Firstly,  the  Neo-Hooke  and  Mooney-Rivlin                 
models  are  unable  to  capture  the  strain  stiffening  phenomena  observed  in  the  material.  Thus,  they                 
are  completely  unable  to  model  the  material  over  the  full  range  of  data.  However,  both  of  these                   
simple  models  fit  the  data  accurately  at  lower  stretch  values,  roughly  until  stretch  reaches  two.                 
For  the  50%  and  100%  thinner  composition  samples,  the  Arruda-Boyce,  Yeoh,  Ogden,  and  Gent                
model  fit  very  well  with  the  experimental  data.  For  the  20%  thinner  composition  sample,  the                 
models  struggled  to  fit  the  data  with  the  same  precision  as  for  the  softer  membranes,  but  the                   
Yeoh  and  Ogden  models  still  provided  adequate  fits.  This  can  be  attributed  to  drastic  increase  in                  
elastic  modulus  at  high  stretch  for  the  20%  thinner  composition  sample,  for  which  the  models                 
struggled  to  accommodate  the  sharp  increase  in  stress.  For  lower  stretch  ranges  (up  to  2.5),  all                  
models  fit  the  data  very  well,  with  the  exception  of  the  Neo-Hooke  model,  which  was  only  valid                   
to   a   stretch   of   around   two.   
  

Based  on  the  parameters  obtained  from  the  curve  fits,  Table  5.2  compares  the  elastic  modulus                 
values  obtained  from  the  model  parameters.  These  values  are  obtained  from  shear  modulus  for                
each  fit,  and  are  trivially  converted  to  elastic  modulus  from  equation  2.  Note  that  the  values  are                   
primarily   estimates   assuming   small   strain.   
  

Table   5.2.   Elastic   Modulus   Determined   from   Hyperelastic   Model   Fits  
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Hyperelastic   
Model   

Shear   Modulus   Stretch   Range   20%   Thinner   
Membrane   

50%   Thinner   
Membrane   

100%   Thinner   
Membrane   

Neo-Hooke     
μ=μ 1   

1   ≤   λ   ≤   4   2.43   MPa   0.928   MPa   0.382   MPa   

1   ≤   λ   ≤   2   1.72   MPa   0.721   MPa   0.310   MPa   

Arruda-Boyce     
μ=μ 0     

(eqn   17)   

1   ≤   λ   ≤   4   1.31   MPa   0.677   MPa   0.302   MPa   

1   ≤   λ   ≤   2.5   1.68   MPa   0.694   MPa   0.298   MPa   

Mooney-Rivlin     
μ=μ 1 +μ 2   

1   ≤   λ   ≤   4   -0.834   MPa   0.130   MPa   0.119   MPa   

1   ≤   λ   ≤   2.5   1.65   MPa   0.620   MPa   0.271   MPa   

Yeoh   (N=3)     
μ=2C 10   

1   ≤   λ   ≤   4   2.44   MPa   0.717   MPa   0.282   MPa   

1   ≤   λ   ≤   2.5   1.96   MPa   0.676   MPa   0.287   MPa   

Ogden   (N=3)     
μ=μ 1 +μ 2 +μ 3   

1   ≤   λ   ≤   4   2.02   MPa   0.681   MPa   0.501   MPa   

1   ≤   λ   ≤   2.5   1.78   MPa   0.940   MPa   0.818   MPa   

Gent     
μ=μ   

1   ≤   λ   ≤   4   1.40   MPa   0.677   MPa   0.300   MPa   

1   ≤   λ   ≤   2.5   1.69   MPa   0.691   MPa   0.298   MPa   



  
The  values  obtained  from  these  fits  are  indicative  of  the  accuracy  of  the  fit  itself.  As  observed                   
earlier,  the  Neo-Hooke  and  Mooney-Rivlin  fits  are  poor  for  large  stretch  ranges,  and  the  elastic                 
modulus  is  altered  significantly  when  the  model  is  fit  over  an  appropriate  range.  Surprising  was                 
the  difference  in  elastic  modulus  for  the  Ogden  model  between  the  overall  and  enhanced  range                 
fits.  This  is  due  to  the  fact  that  determining  shear  modulus  from  the  Ogden  model  relies  on  three                    
parameters,  so  small  changes  in  each  value  propagate  into  large  errors  in  the  estimate  for  elastic                  
modulus.  The  remaining  three  models  were  consistent  for  the  50%  and  100%  thinner               
composition  samples  despite  the  difference  in  stretch  range  used  to  fit  the  model,  with                
discrepancies  up  to  only  6%.  These  similar  values  validate  the  accuracy  of  the  fit  and  efficacy  of                   
the  model  over  both  select  stretch  ranges  and  large  ranges.  Every  model  showed  significant                
difference  for  the  20%  thinner  composition  sample,  since  ignoring  the  drastic  increase  in  stress  at                 
high   stretches   enabled   fits   to   adjust   precisely   at   lower   stretches.   
  

In  general,  the  models  yield  similar  results  in  estimating  shear  and  elastic  modulus.  Only  the                 
Ogden  model  shows  remarkably  different  elastic  modulus  estimates  from  the  other  models.  Table               
5.3  compares  each  obtained  value  from  the  enhanced  range  fit  to  the  elastic  modulus  average                 
from  the  Arruda-Boyce  model.  The  Arruda-Boyce  model  is  chosen  for  its  high  accuracy  in                
fitting  data  over  select  strain  ranges  (Figure  5.11)  and  good  stability  due  to  its  physical                 
background.  By  contrast,  the  Ogden  model  fits  the  data  very  well  but  is  only  stable  when  the                   
product  of  the  model  parameters  is  positive  (in  one  case  a 3 =0,  and  subsequently  elastic  modulus                 
estimate   is   not   accurate).   
  

Table   5.3.   Error   in   Elastic   Modulus   between   Arruda-Boyce   and   Individual   Hyperelastic   Models   

  
Although  the  Ogden  model  fits  the  data  very  well,  the  constants  and  parameters  obtained  from                 
these  fits  do  not  translate  to  shear  or  elastic  modulus.  The  Neo-Hooke  and  Mooney-Rivlin  forms                 
are  both  accurate  for  the  stiffer  membrane,  but  perform  poorly  relative  to  the  other  models  for                  
the  50%  and  100%  thinner  composition  membrane.  The  Yeoh  model  is  ineffective  for  the  20%                 
thinner  composition  membrane,  but  the  best  predictor  for  elastic  modulus  of  softer  membranes.               
Overall,  the  Arruda-Boyce  and  Gent  models  are  consistent  and  accurate  regardless  of  the               
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Hyperelastic   Model   20%   Thinner   Membrane   50%   Thinner   Membrane   100%   Thinner   Membrane   

Arruda-Boyce   
(Estimate)   

1.68   MPa   
  

0.694   MPa   0.298   MPa   

Neo-Hooke   2.38%   3.89%   4.03%   

Mooney-Rivlin   1.79%   10.66%   9.06%   

Yeoh   (N=3)   16.67%   2.59%   3.69%   

Ogden   (N=3)   5.95%   35.45%   174.50%   

Gent   0.60%   0.43%   0.00%   



membrane  composition.  The  Gent  model  was  chosen  to  estimate  elastic  modulus  as  it  is  the  most                  
accurate   model   across   each   membrane   composition.   

5.3   Silicone   Polymer   Membrane   Composition   and   Elasticity   
As  the  silicone  polymer  membranes  can  be  designed  and  optimized  to  obtain  a  desired  stiffness,                 
a  wide  range  of  thinner  (0-120%)  can  be  added  to  the  mixture  before  curing.  Thus,  a  general                   
sense  for  elasticity  of  the  desired  membrane  composition  should  be  known.  Thickness  can  be                
altered   as   well   to   ultimately   fine-tune   stiffness   for   hydrokinetic   energy   harvesting   applications.     
  

Figure  5.12  shows  the  relationship  between  membrane  composition  and  shear  modulus.  Each              
data  point  is  the  average  of  three  samples,  each  tested  three  times  and  fit  with  the  Gent  model  to                     
obtain  a  value  for  shear  modulus.  The  tested  samples  were  fit  with  the  Gent  model  over  an  initial                    
range  up  to  stretch  values  of  1.5,  given  the  application  of  the  material  as  hydrokinetic  foils.  The                   
error   bars   represent   the   maximum   and   minimum   value   obtained   from   any   one   fit.   
  

  
Figure   5.12.   Shear   modulus   from   the   Gent   model   fit   for   varying   membrane   compositions.   Data   is   fit   with   

both   Quadratic   (red   curve)   and   3 rd    Order   (blue   curve)   functions   for   the   full   data   set   (left   plot)   and   
excluding   the   extreme   composition   data   points   (right   plot)   

  
As  the  relationship  between  composition  and  shear  modulus  is  clearly  nonlinear,  the  points  were                
initially  fit  with  a  quadratic  function  (red  curve).  However,  the  quadratic  function  predicts  an                
increase  in  shear  modulus  at  high  compositions,  which  is  intuitively  nonsensical:  an  increase  in                
thinner  will  always  make  the  membrane  softer,  decreasing  its  shear  modulus.  Thus,  the  data  were                 
fit  with  a  3 rd  order  function  (blue  curve)  to  ensure  that  the  curve  would  always  predict  a  decrease                    
in   shear   modulus   with   increasing   thinner   composition.   
  

Due  to  difficulties  synthesizing  membranes  at  low  and  high  thinner  compositions,  caution  needs               
to  be  taken  when  viewing  the  5%  thinner  and  120%  thinner  compositions.  The  5%  thinner                 
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composition  is  highly  viscous  and  therefore  difficult  to  degas.  In  turn,  small  air  bubbles  can  form                  
or  remain  in  the  sample  during  curing,  leading  to  imperfections  and  slight  inaccuracies.               
Conversely,  the  120%  thinner  composition  is  an  extremely  soft  and  sticky  membrane  which  also                
may  be  imprecise  as  samples  deform  even  when  removed  from  glass.  While  it  is  worthwhile  to                  
see  that  the  obtained  values  lie  where  they  are  expected  to,  the  precise  values  may  not  be                   
accurate.  As  a  result,  the  plot  on  the  right  shows  the  curves  being  fit  for  the  middle  five  data                     
points,  excluding  the  extreme  thinner  compositions.  The  3 rd  order  function  obtained  from  these               
data   offers   the   best   estimation   of   shear   modulus   for   given   thinner   compositions   from   0-100%.   

5.4   Mechanical   Oscillator   -   Horizontal   Configuration   
The  potential  of  a  mechanical  oscillator  to  quantify  the  material  modulus  of  elasticity  and                
viscous  damping  coefficient  was  investigated  through  a  series  of  experiments.  The  ‘softest’              
membrane  composition  (100%  thinner)  was  used  in  an  attempt  to  bring  out  the  viscous  damping                 
effect.  For  consistency  of  trials,  all  samples  had  an  80  mm  width  and  500  micron  thickness.                  
Figure  5.13  below  shows  sample  data  from  video  tracking.  A  smooth  spline  was  fit  to  the  data                   
with   2%   maximum   amplitude   tolerance   for   a   smooth   but   accurate   fit.   
  

  
Figure   5.13.   MATLAB   Tracking   Position   for   1.3   pre-stretch,   30mm   amplitude,   25.79g   total   mass,   and   

75mm   initial   length   
  

A  few  notable  phenomena  can  be  seen  from  the  MATLAB  tracking  results.  As  expected,  there  is                  
a  high  periodicity  of  motion  that  is  constant  throughout  the  trial.  The  amplitude  begins  at  a                  
maximum  and  decreases  over  time.  Initially,  this  decrease  is  rapid  but  at  smaller  amplitudes  the                 
decrease  becomes  minimal.  This  can  be  explained  by  some  level  of  viscous  damping,  which  will                 
be  discussed  later.  Furthermore,  the  effect  of  gravity  is  negligible:  oscillations  are  not  ‘pulled’  or                 
skewed  downwards  due  to  the  gravitational  force,  and  instead  the  mass  oscillates  about  the  zero                 
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displacement.  This  is  due  to  the  fact  that  the  contributions  from  inertial  force  and  elastic  force                  
dominate  compared  to  the  gravitational  force  since  the  mass  is  relatively  small  (equation  33).                
Finally,  a  secondary  frequency  can  be  observed  from  the  sinusoidal  behavior  of  the  amplitude.                
This  is  the  reflection  of  a  torsional  mode  from  imperfect  testing.  As  the  string-mass  release  is  not                   
always  exactly  perfect  due  to  the  nature  of  the  experiment,  a  torsional  mode  can  result.  However,                  
as  experiments  were  repeated  numerous  times,  it  is  evident  that  these  secondary  frequencies  do                
not  play  a  role  in  the  primary  frequency  of  oscillation  and  thus  do  not  affect  the  estimation  for                    
elastic   modulus.     
  

Ultimately,  tests  for  each  selected  pre-stretch  value  was  performed  at  least  three  times,  and  each                 
test  lasted  over  seven  seconds.  Given  the  period  length  ranging  from  0.15-0.23  seconds,  each  test                
contained  over  30  oscillations.  For  each  test,  predicted  results  were  fit  to  the  governing  equation                 
of  motion  at  least  three  times  over  a  minimum  of  5-10  periods.  Figure  5.14  (a-i)  shows  examples                   
of  fit  data  over  at  least  10  oscillations  for  various  pre-stretch  conditions.  For  the  most  accurate                  
and  consistent  results,  the  gravitational  force  was  ignored.  In  Figure  5.14,  the  spline  fit  shows  the                  
experimentally  obtained  data  and  the  predicted  motion  is  derived  from  the  ODE  set  up  from                 
Equation   33,   with   values   for   E   and     adjusted   to   fit   the   experimental   results.  η  
  

  
(a)   (b) (c)   

  
(d) (e) (f)   
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(g) (h) (i)   

Figure   5.14.   Experimental   Tracking   Result   and   Predicted   Motion   Fit   for   pre-stretch   of   (a)   1.1,   (b)   1.2,   (c)   
1.3,   (d)   1.4,   (e)   1.5,   (f)   1.6,   (g)   1.7,   (h)   1.8,   and   (i)   1.9   over   select   time   intervals.   Table   5.4   outlines   the   

values   obtained   from   these   and   similar   fits   
  

Despite  the  impact  of  secondary  frequencies  on  the  amplitude  of  oscillation,  the  clear  trend                
downward  is  evidence  of  linear  damping.  Linear  damping  decreases  amplitude  by  a  factor  of  e -bt ,                 
where   with  viscous  damping  coefficient,  ,  and  mass,  m.  Thus,  with  linear  damping,   b = η

2m      η         
decreases  in  amplitude  are  large  initially  and  become  gradual  over  time.  Disregarding  secondary               
frequencies,  this  trend  is  evident  in  our  data.  Thus,  an  estimation  for  viscous  damping  coefficient                 
was  determined  by  fitting  curves  over  the  general  trend  of  the  data,  ignoring  changes  in                 
amplitude  caused  by  torsional  modes.  Figure  5.15  (a-e)  shows  estimates  made  based  on               
experimentally  obtained  data.  The  estimates  for  viscous  damping  are  obtained  by  fitting  the               
curves  to  the  form  ,  where  amplitudes  are  estimated  by  .  Due  to      e cos( t)y = A ­ tη

2m T
2π       ey = A ­ tη

2m    
the  impact  of  secondary  frequencies  on  amplitude,  the  values  obtained  for  viscous  damping               
coefficient  have  high  uncertainty.  As  obtained  values  split  the  variations  from  secondary              
frequencies,  uncertainty  was  determined  by  obtaining  values  that  fell  entirely  within  or  outside  of                
the   oscillations   over   time.   
  

  
(a)   (b) (c)   
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(d)   (e) (f)   

  
(g)   (h) (i)   

Figure   5.15.   Viscous   damping   coefficient   based   on   experimental   data   with   pre-stretch   (a)   1.1,   (b)   1.2,   (c)   
1.3,   (d)   1.4,   (e)   1.5,   (f)   1.6,   (g)   1.7,   (h)   1.8,   and   (i)   1.9   over   select   time   intervals.   Table   5.4   outlines   the   

values   obtained   from   these   and   similar   fits   
  

  
Figure   5.16.   Comparison   between   experimental   results   and   damped   sine   curve,   as   determined   from   the   

viscous   damping   coefficient   and   period   of   oscillation   
  

After  obtaining  the  oscillation  period  and  a  value  for  damping,  the  curves  can  be  fit  via  another                   
method:  a  damped  sine  function.  These  show  very  high  alignment  with  the  predicted  motion  as                 
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well.  As  mentioned  above,  this  function  takes  the  form ,  which  is  shown  in           e cos( t)y = A ­ tη
2m T

2π      
Figure   5.15.   
  

The  following  Table  5.4  shows  the  full  results  obtained  from  fitting  the  tracked  oscillations                
(depicted  in  Figures  5.14).  Estimates  for  modulus  of  elasticity,  viscous  damping  coefficient,              
period,  and  strain  rate  are  shown.  The  error  for  each  condition  is  taken  as  a  combination  of  the                    
single  minimum  or  maximum  point  from  any  one  fit  over  more  than  10  periods  and  uncertainties                  
from  measurements  for  mass  and  length.  In  general,  the  first  few  oscillations  had  marginally                
longer  periods  than  the  rest  of  the  experiment,  so  these  initial  periods  were  largely  ignored                 
during  post-processing.  However,  the  period  reached  an  equilibrium  for  later  cycles  in  all  valid                
experiments,  and  remained  consistent  for  many  oscillations.  Thus,  the  data  reflects  these  later               
cycles  of  motion,  typically  more  than  one  second  after  release.  Note  that  values  for  elastic                 
modulus  are  scaled  to  reflect  changes  in  cross-sectional  area  from  stretching.  After  taking  this                
into   consideration,   the   values   align   very   well.   
  

Table   5.4.   Elastic   Modulus   and   Damping   Coefficient   based   on   Horizontal   Oscillator   Data   

  
The  results  are  as  expected:  a  high  initial  elastic  modulus  followed  by  a  decrease  to  a  relatively                   
constant  elastic  modulus.  The  period,  regardless  of  amplitude  of  oscillation,  was  extremely              
consistent  across  each  trial  and  showed  no  discernable  variability.  The  strain  rate  was  dependent                
on  the  range  of  stretch  covered  during  each  oscillation  and  the  period.  The  strain  rates  are                  
comparable  or  greater  than  those  observed  during  uniaxial  studies,  which  only  covered  ranges  up                
to   0.67   s -1 .   
  

Figure  5.17  compares  the  results  obtained  from  the  mechanical  oscillator  with  estimations  for               
elastic  modulus  from  uniaxial  tests.  The  uniaxial  values  are  plotted  over  the  full  range  of  stretch.                  
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Stretch   
Range   

Period   
(s)   

Strain   
Rate   (s -1 )   

Elastic   
Modulus   (MPa)  

Elastic   Modulus   
Error   (Min-Max)   

Damping   Coefficient   
(10 -3    Ns/m)   

Damping   
Uncertainty   

1.10-1.19   0.226   1.68   0.224   0.215   -   0.234   15.20   ±3.5   

1.20-1.26   0.205   1.26   0.213   0.209   -   0.224   16.63   ±2.5   

1.30-1.36   0.189   1.27   0.190   0.180   -   0.198   7.62   ±3.5   

1.40-1.46   0.180   1.25   0.176   0.169   -   0.183   9.64   ±2.0   

1.50-1.59   0.170   2.16   0.170   0.162   -   0.174   16.55   ±3.0   

1.60-1.62   0.166   0.53   0.159   0.152   -   0.166   8.63   ±3.0   

1.70-1.72   0.161   0.52   0.152   0.145   -   0.159   11.71   ±2.5   

1.80-1.82   0.156   0.50   0.152   0.142   -   0.156   9.49   ±1.5   

1.90-1.92   0.149   0.50   0.153   0.145   -   0.159   12.14   ±2.5   



The  elastic  modulus  obtained  from  the  mechanical  oscillator  results  is  also  plotted  with  the                
diamond  marker,  and  each  point  is  labeled  by  the  starting  stretch.  The  results  show  that  the                  
horizontal  oscillator  can  be  used  to  predict  the  material  elastic  modulus  for  stretches  from  1.1  to                  
1.9.  Practical  complications  prevent  from  testing  outside  of  this  range  for  the  horizontal               
mechanical  oscillator,  as  the  thin  lead  mass  used  in  the  experiment  bends  at  high  stretch.  Given                  
that  the  material  must  always  be  in  tension,  the  minimum  stretch  tested  is  1.1.  All  points  are                   
close   to   the   uniaxial   results,   and   within   the   uncertainty   of   the   experiment.   
  

  
Figure   5.17.   Comparison   of   Elastic   Modulus   Predicted   from   Oscillator   (diamond   markers)   and   Uniaxial   
Testing   (blue   line).   Due   to   physical   limitations   with   the   mechanical   oscillator   method,   the   range   of   stretch   

for   comparison   is   up   to   λ=2   
  

Despite  a  conservative  approach  to  error–which  combines  the  range  of  values  obtained  from  all                
tests  and  uncertainties  associated  with  measurements–the  error  remains  well  within  reason.  The              
horizontal  error  bars  represent  the  stretch  range  each  test  covered.  Overall,  these  data  show  high                 
repeatability  and  prove  the  consistency  of  the  method.  While  results  are  repeatable,  caution  still                
needs  to  be  taken  when  selecting  data  to  report.  Namely,  poorly  executed  trials  should  be  redone                  
until  proper.  Poorly  executed  trials  show  very  large  variability  in  amplitudes  between  subsequent               
periods  and  can  be  distinguished  both  visually  during  testing  and  from  tracking  results.  In  these                 
cases,  secondary  frequencies  from  torsional  modes  are  so  large  that  they  will  begin  to  impact  the                  
primary   frequency   of   oscillations   periodically,   and   are   thus   not   able   to   be   accurately   modeled.     
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It  should  also  be  noted  that,  although  not  explicitly  shown,  there  is  also  some  uncertainty  in  the                   
estimate  for  elastic  modulus  as  determined  by  uniaxial  testing.  As  the  estimate  relies  on  taking                 
the  derivative  of  a  spline  fit  to  noisy  raw  tensile  data,  the  exact  values  depend  largely  on  how                    
well  the  spline  fits  the  data  without  being  affected  by  noise.  The  fit  above  was  chosen  to                   
represent  the  100%  thinner  composition  since  it  aligned  with  multiple  other  uniaxial  samples;               
still,  although  minor,  the  bumps  in  the  curve  are  not  actually  representative  of  the  material                 
behavior.  Increasing  the  tolerance  of  the  spline  fit  would  smooth  these  bumps,  but  sacrifice                
accuracy   at   low   stretch   ranges,   which   is   not   worthwhile   in   this   case.   
  

An  advantage  of  the  mechanical  oscillator,  besides  being  a  low-tech  method  to  estimate  elastic                
modulus,  is  that  it  explicitly  outputs  a  value  for  elastic  modulus.  By  contrast,  curves  must  be  fit                   
to  uniaxial  data  and  derived  to  estimate  elastic  modulus,  in  which  spline  fitting  of  noisy  raw  data                   
can  lead  to  error  in  estimating  elastic  modulus.  Furthermore,  the  method  enables  use  to  quantify                 
a  viscous  damping  coefficient.  The  results  (Table  5.4)  for  the  damping  coefficient  are  variable,                
but  give  a  ballpark  estimate  between  8e -3  and  16e -3  Ns/m.  The  horizontal  oscillator  configuration                
enables  torsional  modes  to  cause  secondary  frequencies  that  impact  period  amplitude,  making  it               
difficult  to  obtain  a  viscous  damping  coefficient  with  higher  confidence.  Especially  since              
oscillation  data  were  taken  from  steady  state–disregarding  the  first  few  oscillations–changes  in              
amplitude   are   often   small,   so   obtaining   a   value   with   high   confidence   is   more   difficult.   
  

Despite  estimating  a  coefficient  for  viscous  damping,  the  values  obtained  do  not  necessarily               
represent  material  damping.  Instead,  damping  could  arise  from  air  resistance,  especially  as  the               
sheet  of  polymer  used  in  the  configuration  is  relatively  wide  and  the  change  in  the  elastomer                  
length  caused  by  vibrations  is  small.  For  this  horizontal  configuration,  the  damping  term  is  3rd                 
order  for  displacement  during  small  oscillations,  so  the  term  becomes  negligible  when  vibrations               
are  small.  This  provides  reason  to  believe  that  air  resistance  could  play  a  factor  in  the  observed                   
damping  from  experimental  results,  as  damping  may  be  caused  by  a  force  not  considered  in  our                  
equation  of  motion.  Regardless,  a  study  of  the  oscillator  conducted  in  a  vacuum  would  provide  a                  
lot   of   insight   into   the   contributions   from   both   material   properties   and   air   resistance   to   damping.   
  

Finally,  some  alternative  methods  for  data  interpretation  can  be  explored  in  future  directions.               
Experimental  data  can  instead  be  compared  with  a  linearized  version  of  the  equation  of  motion                 
(Equation  33),  and  a  relationship  between  stress  in  the  material  and  natural  frequency  can  be                 
obtained.  Much  like  the  experiment  above,  repeated  testing  at  different  pre-stretch  values  can  be                
conducted  to  obtain  a  range  of  values.  Linearizing  the  equation  of  motion  substantially  reduces                
the  complexity  of  the  solution  to  the  differential  equation,  however,  this  estimation  would  only                
hold  true  for  small  oscillations.  These  are  especially  hard  to  test  at  low  pre-stretch  values  where                  
larger   oscillations   are   needed   to   properly   excite   the   system.   
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5.5   Mechanical   Oscillator   -   Vertical   Configuration   
The  vertical  oscillator  configuration  was  tested  to  further  study  the  damping  coefficient,  .  Due              η   
to  the  mass  moving  strictly  in  line  with  the  membrane,  high  strain  rates  were  obtained:  above  4                   
s -1 .  However,  the  data  could  not  be  accurately  fit  or  predicted  computationally  due  to  the  variable                  
behavior  of  elastic  modulus  over  large  changes  in  stretch.  Furthermore,  the  configuration  is  less                
robust  than  the  horizontal  configuration.  Uncertainty  associated  with  measurements  for  mass             
creates  large  variability  in  trying  to  estimate  a  value  for  tangent  modulus.  This  is  not  surprising,                  
as  motion  has  a  strong  dependence  on  the  gravitational  force.  As  a  result  of  both  of  these  issues,                    
the  vertical  configuration  could  not  be  used  to  obtain  any  useful  estimates  to  characterize  the                 
material.   

6.0   Conclusions   
As  populations  across  the  globe  look  to  address  their  carbon  emissions,  an  emphasis  is  placed  on                  
renewable  energy  alternatives.  Hydrokinetic  energy  extraction  from  hydrodynamic  foils  is  a             
promising  method  for  energy  harvesting,  especially  in  coastal  regions.  Within  this  field,              
compliant  membrane  foils  have  emerged  as  an  area  of  interest,  although  the  technology  is  still  in                  
a  nascent  stage.  As  a  result,  identifying  an  ideal  material  for  these  foils  is  critical  in  realizing  the                    
potential  of  these  foils.  This  study  looked  to  characterize  the  silicone  polymer  material  being                
utilized   for   these   foils.   
  

Overall,  uniaxial  testing  results  showed  no  significant  viscoelastic  behavior.  At  strain  rates              
present  in  energy  harvesting  applications,  the  material  strength  and  loading  will  not  change  due                
to  viscoelastic  behavior.  This  is  crucial,  as  viscoelastic  behavior  absorbs  energy  that  would               
otherwise  have  increased  power  (and  therefore  foil  efficiency).  Additionally,  the  material  did  not               
show  long-term  changes  in  stress-strain  relationship  when  being  repeatedly  tested  over  weeks.              
This  is  also  critical  given  the  material  application–it  should  be  able  to  maintain  material  integrity                 
across   month-long   time   spans.   
  

To  actually  characterize  the  material,  a  few  methods  were  employed.  Uniaxial  testing  data  were                
used  to  compare  a  variety  of  hyperelastic  material  models,  and  ultimately  identify  the  Gent                
Model  as  the  most  effective  model  for  our  material.  Estimates  for  shear  modulus  and  elastic                 
modulus  were  obtained  from  fitting  uniaxial  data  with  this  model  and  used  to  identify  the                 
relationship  between  membrane  thinner  composition  and  desired  elastic  modulus.  This            
relationship  can  be  used  to  estimate  stiffness  of  these  silicone  materials  at  any  thinner                
composition  between  5%  and  100%.  The  initial  addition  of  thinning  liquid  decreases  the  shear                
modulus  greatly,  so  extra  precaution  needs  to  be  taken  if  looking  to  obtain  a  shear  modulus  in                   
this  region.  Thinner  composition  should  never  exceed  100%,  as  tear  strength  and  material               
integrity   become   seriously   compromised.   
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While  hyperelastic  models  output  a  value  indicative  of  material  strength,  actual  strength  of  these                
nonlinear  materials  depends  on  the  strain.  Furthermore,  as  foils  for  energy  harvesting,  a               
pre-stretch  can  be  applied  to  maintain  tension  in  the  foil  and  create  a  desired  stiffness.  Local                  
material  elastic  modulus  can  be  obtained  by  deriving  for  the  slope  of  uniaxial  data,  however,  the                  
potential  of  a  mechanical  oscillator  is  also  examined  to  estimate  values  for  local  elastic  modulus.                 
The  results  showed  high  agreement  with  uniaxial  test  data,  and  the  mechanical  oscillator  also                
shows  high  repeatability.  The  oscillator  very  accurately  calculates  relative  changes  in  elastic              
modulus  at  various  stretch  values  ranging  from  1.1  to  1.9.  Additionally,  the  method  provides  an                 
estimate  for  viscous  damping  coefficient,  which  gives  a  sense  of  the  damping  behavior  of  the                 
material.  The  damping  coefficient  is  a  theoretical  parameter  that  explains  energy  dissipation:  at  a                
maximum  of  16e -3  Ns/m  for  the  100%  thinner  composition  membrane.  All  other  compositions               
will  have  a  lower  damping  coefficient  than  this  membrane,  but  precise  values  can  be  obtained  by                  
testing  samples  with  this  method.  Further  analysis,  however,  should  be  conducted  to  determine               
whether  this  phenomenon  is  actually  the  result  of  material  properties  or  if  it  is  instead  influenced                  
by   air   resistance.   
  

In  determining  elastic  modulus  at  a  given  stretch  for  nonlinear  materials,  measuring  the  slope  of                 
tensile  data  or  using  the  mechanical  oscillator  is  much  more  accurate  than  relying  on  a                 
hyperelastic  material  model.  The  models  tend  to  overestimate  the  local  material  strength,  at  least                
at  small  stretch  ranges.  The  mechanical  oscillator  method  is  remarkable  for  its  simplicity,  very                
low  cost,  and  accessibility.  Furthermore,  post-processing  outputs  desired  values  (E  and  η)              
directly.  This  method  has  implications  for  independent  researchers  and  academics  without  access              
to  uniaxial  testing  machines,  which  are  usually  only  accessible  to  institutions  and  large               
corporations.  The  initial  results  are  promising  and  the  method  should  be  investigated  for  more                
materials.  Ultimately,  the  horizontal  oscillator  testing  method  developed  in  this  study  can  be  used                
to  determine  the  elastic  modulus  at  a  desired  strain  and  a  viscous  damping  coefficient  for                 
hyperelastic   or   viscoelastic   materials.   
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